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Abstract We present a novel and general formulation for the optimisation of gra-
dient coils, wherein the minimization of the conductor length and the simplicity of 
construction are two of the main design parameters. The bi-planar gradient coils are 
intended to be part of a new compact neonatal magnetic resonance imaging (MRI) 
scanner based on a 0.35 T permanent magnet. It is shown that minimizing the cur-
rent density vector is equivalent to minimizing the wire length. The gradient coil 
design involves a convex optimization method where the Euclidian and Manhattan 
norms of the current density vector are minimized under the field linearity, wire 
width, force and shielding constraints. The design problem is solved iteratively in 
order to include the influence of the magnetization of the pole and iron ring over 
the gradient field linearity. A suite of gradient coils using both norms and resistance 
minimization are designed and their performances are compared. Gradient coils 
designed using Euclidian norm show shorter wire length and slightly better perfor-
mance than that designed using Manhattan norms; however, the presence of straight 
wires in the current pattern is very convenient for manufacturing purpose.

1 Introduction

Magnetic resonance imaging (MRI) necessitates the generation of three strong, lin-
ear and orthogonal magnetic field gradients in a diameter spherical volume (DSV) 
of around 500 mm. The magnetic fields are generated by three independent gradient 
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coils usually wrapped around a cylindrical surface and casted in epoxy resin. The 
coils are constructed using wires or cut thin copper sheets that follow a prescribed 
current pattern architected to minimize the stored magnetic energy and resistance 
whilst producing a very linear magnetic field gradient. Low resistance and low 
stored magnetic energy are both required for ultra-fast sequences such as EPI [1]. 
A high linearity is necessary to ensure that the magnetic field strength is unique 
to each point within the sample in the scope of the time-integral of the imaging 
sequence at play, which is essential in order to avoid geometrical distortions in the 
resulting images after inverse Fourier transformation [2, 3]. Horizontal whole-body 
gradient coils are usually actively shielded [4] and force compensated [5] in order to 
circumvent the generation of eddy currents that produce deleterious image artefacts 
[6] and in mitigating the acoustic noise generated due to the Lorentz interaction of 
the main magnetic field with the time-varying gradient coil currents [5].

Gradient coils can be also architected to conform to the parallel plane arrange-
ments and have been extensively used in the past few years in the “open” C-shaped 
MRI scanners [7–14], where they are fixed to the pole faces of a permanent mag-
net [15]. Contrary to the whole-body cylindrical coils, planar coils normally do not 
include active shielding mainly due to the limited space available between the radio 
frequency (RF) coil and the pole face of the permanent magnet, which usually is 
made of pure iron. Since the conductivity of the pure iron is relatively high (around 
1.03·107 S/m), eddy current are always expected to be induced in the polished face of 
the pole under the temporal variation of the gradient fields. A grid of low electrically 
conductive material (eddy device) is usually placed between the gradient coil and 
the pole face in order to mitigate the induction of eddy currents in the main magnet. 
Unfortunately, it is not possible to completely shield the main magnet from the time-
varying gradient fields, so the main magnet is likely to be a source of leakage eddy 
currents [16, 17]. The eddy currents in turn are a source of Joule heating and hence 
possible undesirable frequency shifts may occur due to the temperature increase in 
the pole ring and passive shims. In addition, the magnetic field produced by the eddy 
currents opposes the gradient field thereby compromising the spatial quality of the 
magnetic field produced by the gradient coils [18]. The lack of a secondary shielding 
coil also limits the possibility of force compensation which is key to mitigate acous-
tic noise. Although mechanical fixation to the pole face using rubber material may 
absorb part of the mechanical vibration, the remaining acoustic modes may induce 
disturbing noise, especially in compact scanners such as the neonatal imager.

Manufacturing cost and simplicity of construction are aspects rarely studied by 
gradient coil designers in both whole body horizontal and planar gradient coils. The 
first intent to deal with cost by producing a simplified winding pattern was previ-
ously presented with the aim of designing shim coils with minimal power loss [19]. 
The l1-norm of the conductor electrical length was minimized using linear program-
ing, thereby sparse and square-shape current patterns were obtained, but with multi-
turns located in the same location; thus bringing some rounding issues. Recently, 
convex optimization was applied to minimize the l1-norm of the current density 
amplitude, thereby minimizing the coil length using Euclidian distance [20]. Circle-
shaped current patterns were obtained and several examples were shown where the 
l1-norm minimization combined with a boundary element method (BEM) produces 
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compact and smooth coil patterns of superior efficiency compared to those obtained 
with the conventional resistance minimization approaches [21]. However, computer 
numerically controlled (CNC) machine is required to accurately groove a plate in 
order to place the conductor in its place.

We hypothesize in this work that the minimization of the wire length using 
Euclidian or Manhattan distance, in combination with the minimization of the infin-
ity norm of the current density [22], produces compact and regular shaped coil cur-
rent patterns that can help solve the aforementioned problems associated with lack 
of shielding, force balancing and cost of manufacturing of planar gradient coils.

In this study, we present a generalized formulation for gradient and shim coil 
designs using l1-norm and l2-norm minimization of the conductor electrical length. 
In particular, the new formulation is applied to the design of a planar gradient coil 
set for neonatal imaging based on a 0.35 T permanent magnet. A suit of gradient 
coil designs is explored using both Euclidian and Manhattan distance minimization 
in order to provide a guidance on the advantages and limitations of both techniques, 
as well as the expected gains in respect to the conventional resistance minimization 
approach. Coil performance measured as the ratio 2

L
 and 2

R
 and force are compared in 

order to show the variation from a purely Euclidian/Manhattan minimization relative 
to the resistance minimization. The coil efficiency η is defined as the ratio between 
the gradient strength and the operating current. R and L are the coil resistance and 
inductance, respectively. Typical Euclidian and Manhattan coil pattern are shown 
and two x-gradient coils are selected as possible candidates to be built for a 0.35 T 
open C-shape neonatal imaging scanner.

Finally, a self-shielded Z-gradient coil and its current pattern are implemented 
to demonstrate that, even using a single plane coil domain, it is possible to achieve 
shielding by reducing the residual eddy current [23] to levels smaller than 0.5%. 
Coils designed using Euclidian minimization show a reduction of the cost by short-
ening the total wire length, which also suggests a simplicity of construction com-
pared to the pattern designed using resistance minimization.

2  Methods

2.1  Theory

The Euclidian distance measures the shortest distance between two points or equiv-
alently the length of the shortest path between two points in a continuous space. In 
contrast, the Manhattan distance measures the length of multiple paths connecting 
two points along axes at right angles. The Manhattan distance is known also as the 
‘Taxi Cab metric’ due to the grid discretization of the space. Given two points P1(x1,y1) 
and P2(x2,y2) located in a plane, the Euclidian and Manhattan distances are defined as 
�2 =

√
(x2 − x1)

2 + (y2 − y1)
2 and �1 = ||x2 − x1

|| + ||y2 − y1
|| , respectively. The con-

cept of Euclidian distance was recently applied to the design of gradient coils [20], 
which explains why the current patterns show a compact circular shape as the opti-
mization problem finds the shortest distance between two points. As a result, coils 
of reduced total conductor length are obtained. We show that it is possible to obtain 
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general formulations of Euclidian and Manhattan distance optimisation approaches in 
the design of gradient coils where the surface current density �i is treated as a vector 
rather than the magnitude of the vector [20].

Let us assume that the coil domain is formed by a discrete set of Ne triangles of 
thicknesses t as described in several previous publications on the inverse boundary ele-
ment method (IBEM) applied to the design of gradient coils [21, 24–28]. The electrical 
resistance in the coil domain assuming a resistivity ρ is defined as:

where Ni is the number of wires in the triangle i, wi is the wire width and ln,i is the 
length of the wire n in the triangle i. The resistance in the triangle i can be expressed 
as:

For completeness, Fig. 1 shows an equivalent representation of Fig. A1 as illustrated 
in [20]. The unknown stream function �i is defined within the node triangle [P,Q,R] 
and is assumed to be constant within the node in the direction of PQ (i.e. along the 
thickness of the flat copper wire), thus Δ�i = �iR − �iP.

The surface current density in the triangle i is expressed as follows:

and the current that flows in each wire of constant width wi is defined by: I = Δ�i

Ni

 . 
The total wire length in the triangle i can then be calculated in the following 
manner:

(1)Rtot =
�

t

Ne∑

i

1

wi

Ni∑

n=1

ln,i,

(2)Ri =
�

twi

Ni∑

n=1

ln,i.

(3)�i =
�iΔ�i

2Ai

(4)
Ni∑

n=1

ln,i =

‖
‖�i

‖
‖pNi

2
.

Fig. 1  One of the triangles of 
the coil domain. A constant 
surface current density J

i
 flows 

in the triangle i of area Ai. A 
current I flows in each wire of 
constant width wi, gap gi and 
length ln,i
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By combining Eq. (5) and the definition of I in Eq. (4), we get:

Equation (5) implies that the total conductor length in the triangle i is equivalent to 
the lp-norm of the constant current density �i . This suggests that, if the aim of the 
optimization problem is to minimize the manufacturing cost by reducing the wire 
length, then the objective function is expressed as the function of the lp-norm of the 
current density �i . p can take values of 1 or 2, where p = 2 (Euclidian distance) was 
already presented in [20]. In this work however, Eq. (5) is expressed as function of 
the current density vector �i , and p = 1 (Manhattan distance) is a novel concept pre-
sented in this paper.

The total resistance in the coil domain

is obtained by substituting Eq. (5) in Eq. (1). There are two possible variations of 
Eq. (6) depending on the manufacturing technology to construct the coil winding 
pattern. If the wire width varies along the coil domain then

and by substituting Eq. (7) in Eq. (6) results in:

which represents, assuming p = 2 a well-known expression of resistance calculation 
[20]. If the manufacturing technology is based on using wires of constant width for 
the coil winding, then the minimum wire width is defined as follows:

Combining Eqs. (9) and (6) gives:

(5)
Ni∑

n=1

ln,i =
‖
‖�i

‖
‖p

Ai

I
.

(6)Rtot =
�

I ⋅ t

Ne∑

i

Ai

wi

‖‖�i‖‖p

(7)wi =
I

‖
‖�i

‖
‖2

(8)Rtot =
�

I2 ⋅ t

Ne∑

i

‖‖�i‖‖2Ai
‖‖�i‖‖p

(9)min wi =
I

‖
‖�i

‖
‖∞

.

(10)Rtot =
�

I2 ⋅ t

Ne∑

i

‖‖�i‖‖∞Ai
‖‖�i‖‖p,
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where ‖‖�i‖‖∞ can be replaced by its equivalent form: max ‖‖�i‖‖2 . Equations (8) and 
(10) can be combined in the following convex optimization problem:

subject to

where α and β are weighting factors, Biron
z

 is any external source of magnetic field, in 
this case the magnetic field resulting from the magnetization of iron and calculated 
using the equivalent magnetic charges [14].Btarget

z  is the target field with a prescribed 
spatial behaviour, ν is a scaling factor, ε the tolerance error of the target field. While 
the term ‖‖�i‖‖∞ can be placed in the objective function multiplied by a weighting fac-
tor, in this work it is included as a constraint in order to directly control the desired 
wire width. �S

i
 is the induced current density in the first eddy current surface. The 

infinity norm of �S
i
 is constrained to values less than jring in order to avoid peak 

values of the induced current and thereby hot-spots in the pole ring. The values of 
j0 and jring can be found in a preliminary iteration and can be adjusted to a desired 
target.�i is the Lorentz force exerted in each triangle embedded in the magnetic 
field produced by the main magnet. Fmax is adjusted according to the target value 
defined by the designer.

The optimization algorithm must be repeated several times. At first Biron
z

 is 
zero as we have to assume that there is no magnetic field contribution from the 
pole faces. After the solution of the stream function � is found, the pole magnet-
ization is calculated [14]. The second iteration includes the magnetic field Biron

z
 

produced by the last stream function solution. The process is terminated when 
the target homogeneity � is fulfilled.

The optimization problem was implemented in Matlab 2016a (The Math-
works, Natick, MA, USA) on a ASUS laptop GX700VO equipped with an  Intel® 
i7-6820HK @ 2.7 GHz and 32 GB of RAM.

minimize

[

��TR� + �(1 − �)

Ne∑

i

Ai
‖
‖�i

‖
‖p

]

((Bz
coil + Bz

iron) − Bz
target)∞

�Bz
target

∞

100 ≤ �

‖
‖�i

‖
‖∞ ≤ j0

‖‖‖
�
S
i

‖‖‖∞
≤ jring

‖
‖�i

‖
‖2 ≤ Fmax
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2.2  The design problem

To demonstrate the new method, we shall design a gradient coil capable of generat-
ing at least 40 mT/m in a 165 mm DSV, with a slew rate larger than 150 T/m/s using 
a power amplifier capable of delivering 150 Amps at 150 V, a total force of less than 
30 N and a residual eddy current magnetic field smaller than 0.5%. Figure 2a, shows 
a schematic representation of the coil domain, DSV, pole and ring, the permanent 
magnet (PM) and the iron yoke.

The pole and ring were both made of pure iron are considered in the design prob-
lem. We assumed that the magnetic field produced by the gradient coil has no sig-
nificant influence on the permanent magnet (PM) or on the iron yoke magnetiza-
tion that would influence the magnetic field produced by the coil. The pole and the 
pole ring were only considered in the design problem. Figure 2b describes the main 
dimensions of the x-gradient coil domain as well the dimensions of the pole and 
ring. The ring is represented in a shaded area and only the surface defined by the 
coordinates (1,2,3,4) are included as the eddy first surface. The pole ring conductiv-
ity was set to 1.03·107 S/m and the relative permeability µr was 380.

2.3  lp‑norm vs resistance minimization

A suit of 16 x-gradient coils were studied using l1-norm and l2-norm and compared 
with a conventional resistance minimization to determine the gains and possible lim-
itations of the two lp-norm methods. This numerical study was of paramount impor-
tance to the neonatal MRI system project as it provided a decisive selection guide 
for best candidate coils to be manufactured in scope of both, the coil performance 
and simplicity of construction. The magnetic field influence from the iron pole and 
ring were considered after the candidate coils were selected.

Fig. 2  Gradient coil design problem. a 0.35 T magnet formed by the yoke, permanent magnet, pole and 
pole ring. b A linear magnetic field is prescribed in a 165 mm DSV. The x-planar coil is placed in paral-
lel planes separated by the distance of 300.6 mm. The coordinates of the pole and ring are provided for 
completeness. The shaded region represents the first eddy surface
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The factor α was varied in the range 0–1, j0 was set such that the minimum wire 
of constant width was equal to 4 mm for all the designs, the wire gap was set to 
2.2 mm, the non-linearity tolerance ε was constrained to 5% and the residual eddy 
current smaller or equal to 0.5%. The magnetic field profile generated by the 0.35 
T magnet was also provided for an accurate Lorentz force calculation. Fmax was 
restricted to values no larger than 30 N. The number of contours for all the designs 
was set to 28.

Best performance x-gradient coils were selected and an additional optimization 
was performed this time, including the influence of the pole and ring magnetization. 
The studied was focused in the x coil only, as the results in terms of coil perfor-
mance as function of the applied method is also valid for the y-coil. Three z-gradient 
coils were also designed considering α  = 1 and α = 0 to evaluate the coil perfor-
mance when resistance, l1-norm and l2-norm methods are applied. The z-gradient 
coils were designed using l1-norm and l2-norm strategies and considering the pole 
and ring magnetization and its influence over the gradient coil magnetic field. The 
wire of constant width was fixed to 3 mm and the gap between wire edges to 2 mm.

3  Results

Figure 3 presents the behaviour of the figures of merit (FoMs) that have been calcu-
lated in order to characterize the coil performance; Fig. 3a 2

L
 and Fig. 3b 2

R
 . The first 

expression in Fig. 3a is related to the ratio between the efficiency and inductance 
(i.e. 2

L
 ) and the second (Fig. 3b) between the coil efficiency and the resistance (i.e. 2

R
 ) 

[29].
The variation of α in the range from 0 to 1 permits us to study the trade-offs 

between the lp-norm and the conventional resistance minimization. Figure  4a 

Fig. 3  Variation of the coil performance from purely lp-norm to the conventional resistance minimiza-
tion. The figure of merits a 2

L
 and b 2

R
 provide guidance on the coil performance in terms of the trade-off 

between lp-norm and resistance minimization
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shows the force exerted in the x-coil winding when the coil is embedded in the 
0.35 T magnetic field.

Both optimization methods, Manhattan and Euclidian, yield different force 
behaviours when the lp-norm is weighted in respect to the resistance minimi-
zation. Figure  4b depicts the ratio between efficiency and conductor length. It 
intends guide the designer to choose the optimization method on terms of the coil 
cost by relating the proportion of field strength with wire length.

Figure 5 show the current patterns of the suit of x-gradient coils designed con-
sidering α = 0 and purely lp-norm wire length minimization (A and B) and (C) 
resistance minimization strategy.

Fig. 4  a Force variation in the x-coil as function of the trade-off between lp-norm optimization and con-
ventional resistance minimization. b The ratio η/wire length guides the coil designer in terms of the man-
ufacturing cost when lp-norm strategies are applied as design methods

Fig. 5  Half of the x-planar gradient coils for neonatal imaging. a D-shape coil designed using the Man-
hattan minimization (l1-norm). b Bin-shaped l2-norm coil and the conventional c a typical resistance 
minimization x-planar gradient coil. The circle surrounding the coil pattern represents the coordinate (4) 
in Fig. 2. Different colours indicate opposite current directions
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The black circle surrounding the coil patterns provides a guide on the proxim-
ity of the coil current pattern to the inner surface of the pole ring. Figure 5a, b are 
the first designs based on Fig. 3 when α = 0 and Fig. 5c is the design correspond-
ing to Fig. 3 when α = 1.

Figure 6 illustrates the x-coil assuming α = 0 and considering the pole and ring 
magnetization under the influence of the gradient coil magnetic field. Figure 6a 
describes a typical Manhattan coil wire pattern while Fig. 6b shows a distinctive 
Euclidian gradient coil winding shape [20].

Table  1 shows the main characteristics of the gradient coils illustrated in 
Figs. 6a, b. The second column corresponds to the coil designed using the new 

Fig. 6  a Half of the D-shape and b Bin-shape x-gradient coils designed using the Manhattan and Euclid-
ian norms, respectively. Both coils were designed considering the iron pole and ring of the 0.35 T per-
manent magnet. The circle surrounding the coil pattern represents the coordinate (4) in Fig. 2. Different 
colours indicate oppose current directions

Table 1  Characteristics of the designed x-planar gradient coils. The coils were designed assuming the 
influence of the pole iron and ring

Properties Manhattan norm l1-norm Euclidian norm l2-norm

η (µT/m/A) 427 439
Inductance (µH) 340.4 348
Resistance (mΩ) 184 181
Slew rate (T/m/s) @ 150 V 166 168
Rise time (µs) 226 224
Residual eddy current (%) 0.08 0.078
Max non-linearity DSV (16 × 16 × 16) 

(cm)
+ 5/− 3.89% + 5/−4.10%

Force (N) 16 15
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formulation presented in this paper based on l1-norm and the second column pre-
sents the values belonging to the coil optimized using Euclidian norm.

Figure  7 shows the half of three z-self-shielded gradient coils. The coils were 
designed considering the magnetization created by the magnetic field produced 
by the z coils. Figures 7a, b describe the coils designed with the new l1-norm and 
the already presented l2-norm [20]. Figure  7c illustrates the case of resistance 
minimization.

The Table  2 is divided into four columns. The first column represents the coil 
characteristics, while the second and third columns show the values corresponding 
to the coils optimized using Manhattan and Euclidian norms. The properties of the 
coil optimized using the conventional resistance minimization appears in the third 
column.

Table 3, illustrates the radial positioning of the loops presented in Fig. 7b. The 
radius has been grouped in three different columns as they are appearing clustered in 
three sections in Fig. 7b. The ‘Sense’ column is presented in order to account for the 
current direction in the self-shielded planar coil.

Fig. 7  Half of the self-shielded z-planar gradient coil designed using a Manhattan, b Euclidian norms 
and c resistance minimization. The coils are optimized assuming the influence of the iron pole and ring. 
Different colours indicate opposite current directions

Table 2  Characteristics of the z-self shielded gradient coils using the generalized norm minimization 
strategy and the conventional resistance minimization method

Properties Manhattan l1-norm Euclidian l2-norm Resistance minimization

η (µT/m/A) 696 704 648
Inductance (µH) 355 360 322
Resistance (mΩ) 262 258 282
Slew rate (T/m/s) @ 150 V 268.5 268.5 271
Rise time (µs) 124.4 124.5 122
Residual eddy current (%) 0.36 0.48 0.47
Max non-linearity DSV 

(16 × 16 × 16) (cm)
+ 4.33/− 4.95% + 4.25/− 4.81% + 4.34/− 5%

Force (N) 11 9.64 11.8
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4  Discussion

The new formulation presented in Eq. (6) includes two methods based on the mini-
mization of the total wire length: Manhattan (this paper) and Euclidian norm. Equa-
tion (5) shows that the total conductor length can be expressed as the lp-norm of the 
current density vector and therefore the optimization problem can be based on the 
minimization of ‖‖�i‖‖p ; thereby the problem can be setup as a convex optimization 
method [20]. In this paper the product ‖‖�i‖‖∞‖‖�i‖‖p in Eq. (10) was implemented as 
the minimization of ‖‖�i‖‖p in the objective function and ‖‖�i‖‖∞ was included as linear 
constraint. This form provides a direct control of the wire width while the optimiza-
tion still keeps its convex properties.

Figure  3a shows that the FoM 2
L
 tends to increase when the design problem is 

weighted towards the conventional resistance minimization method. The coil patterns 
designed using resistance minimization tends to expand or cover the total area of the 
coil domain for an optimal Joule dissipation. The mechanism of spreading the coil 
pattern yields a significant minimization of the inductance mainly due to the reduc-
tion of the turn–turn mutual inductive coupling. In contrast, the minimization of the 
Manhattan (this paper) and Euclidian norms of the wire length tend to produce com-
pact coil winding and as consequence higher inductance. Therefore, if a coil of very 
high slew rate is required as part of the design goal, then the resistance minimization 
is the method of choice. Conversely, if the power dissipation when using a wire of 

Table 3  Radius corresponding 
to each loop in the self-shielded 
z-gradient coil optimized using 
l2-norm

The coil is shown in Fig. 7b

Sense Radius (mm) Sense Radius (mm) Sense Radius (mm)

+ 23.33 + 99.75 – 255.73
+ 28.46 + 104.85 – 261.91
+ 33.69 + 109.94 – 266.97
+ 38.82 + 114.99
+ 43.57 + 120.02
+ 53.47 + 125.09

+ 130.13
+ 135.21
+ 140.23
+ 145.29
+ 150.3
+ 155.35
+ 160.36
+ 165.43
+ 170.52
+ 175.51
+ 180.57
+ 186.08
+ 192.29

Axial position ± 148.7 mm
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constant width is the main design target, in this case lp-norm minimization should be 
used. Figure 3b demonstrates that lp-norm, and in particular l2-norm, show the high-
est performance 2

R
 compared to l1-norm and resistance optimization.

In terms of force compensation, the Euclidian coil (l2-norm) shows the minimal 
total force. However, the coil designed using resistance minimization tends to be 
less balanced than that using lp-norm optimization. Figure 4a describes the behav-
iour of the force exerted on the coil winding when the optimization method tends to 
towards conventional resistance minimization. The force tends to increase as the coil 
current pattern approaches the pole ring where the magnetic field profile becomes 
less uniform and more difficult to control. The winding compactness characterizing 
the lp-norm coils favours the force compensation.

Figure 4b demonstrates that the l2-norm coil is the better choice if the manufac-
turing cost is one of the goals of the coil design. The compactness and the tendency 
of the coil pattern to reduce the wire length by shorting the distance in the Euclid-
ean space yields the best cost effective coil. The l1-norm coil shows the lowest cost 
effective figure as the coil pattern tends to use straight wires, while resistance mini-
mization and l2-norm produces smooth current patterns. Figure 5 shows the typi-
cal solutions for the three design strategies. As discussed previously, the l1-norm 
(Fig. 5a) tends to produce straight wires as a consequence of the wire length reduc-
tion by l1-norm minimization, while the l2-norm (Fig. 5b) produces bin-shape-type 
coils of smooth profile. The resistance minimization (Fig. 5c) generates a familiar 
current topology where the wires tends to occupy the entire coil domain surface. 
The l2-norm is the most cost effective solution, but by visual inspection the D-shape 
like pattern of the l1-norm may indicate some advantages when manual wire placing 
is used. The sections of straight wires may facilitate the coil construction.

Figure 6a, b describes the selected coils configurations considering the simplicity of 
construction, force balancing and 2

R
 performance. The coils were designed assuming the 

change of the magnetization due the gradient field. As the iron is assumed to be linear, the 
change in the gradient amplitude manifests as a linear change in the amplitude of the iron 
magnetization, therefore the linearity of the gradient field is constant for any sequence.

Table 1 shows that both gradient coil efficiencies are better than that of the design 
target, by about 1.6 and 1.65 times, respectively. That factor is due to the presence of 
the iron pole and ring that unavoidably increases the inductance by nearly two-fold 
compared to when the coil is in the absence of the iron pole and ring. The slew rate 
in both designs outperforms the target values and the l2-norm shows slightly higher 
value to that of the coil conceived with l1-norm. Residual eddy currents, linearity 
and force are all well below the design requirements. In the absence of the iron, the 
gradient coil non-linearity increases to 8%, which implies that in order to produce a 
linear field, the effects of the iron pole and ring must be considered.

While the characteristics of both coils do not differ significantly, the winding pat-
tern makes all the difference for the manufacturing process. The l1-norm shows a large 
number of straight wire sections which is significantly preferred over the curved wire 
sections, especially when manual winding is used to build the x and y coils.

Figure 7 illustrates the winding pattern of the self-shielded bi-planar z-gradient 
coil. The lp-norm z coils show three clusters of wires; the current changes direc-
tion in the most exterior wires. While l1-norm coil shows sections of straight wires, 
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l2-norm illustrates a smooth circular-shape profile. The z-coil designed using resist-
ance minimization (Fig. 7c) shows a typical effect of spreading the wires to occupy 
the whole surface, which effectively reduces the inductance with an undesirable 
reduction in coil efficiency.

Table 2 illustrates the values of the main characteristics for all three designs. The 
lp-norm coils show smaller resistance than that of the conventional resistance mini-
mization method. This effect was previously documented [20] and is valid when the 
coil uses wires of constant width. The three reversed turns found close to the iron 
ring reduce the residual eddy below 0.5% thereby fulfilling the design target. In con-
trast, the force in the z coil is lower compared to that in the x and y coils.

Under the criteria of simplicity and the presence of sections of straight wires, the 
gradient coil designed with l1-norm was eventually selected for manufacturing. It 
is however clear that the coil designed using l2-norm shows superior performance 
compared to both l1-norm and resistance minimization technique. Table 3 shows the 
radius of the loops for the l2-norm coil for verification and completeness.

5  Conclusion

A new and general gradient coil design method based on the minimization of the lp-
norm of the current density vector has been presented. The formulation covers the 
case of the l2-norm previously presented [20]. The minimization of the wire length 
is equivalent to the minimization of the lp-norm of the current density vector. Gradi-
ent coils designed using resistance minimization method are recommended when 
the slew rate is one of the main design goals. If a conductor of constant width is 
used and power dissipation is one of the design targets however, then l2-norm coil 
or Euclidian distance minimization is the preferred design choice. If simplicity of 
construction is the priority, then l1-norm is recommended due to the presence of 
straight wires in the current pattern, even though l2-norm may show a better cost 
effective ratio in terms of gradient strength per wire. While the coils designed using 
the lp-norm and resistance minimization fulfil the requirements for neonatal MRI 
scanner, the gradient coils designed using l1-norm were effectively chosen to be 
constructed due to the presence of straight wire sections, which can be much easier 
manufactured with great accuracy.
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