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ABSTRACT 
This paper proposes the use of Direct Inverse Control (DIC) with 
Elman Recurrent Neural Network (ERNN) learning algorithm for 
the altitude control of a heavy-lift hexacopter. The study was 
conducted analytically using the real flight data obtained from real 
plant experiment. The results showed that the ERNN can 
successfully control the altitude of the heavy-lift hexacopter, where 
the response generated by the DIC system was in good agreement 
with the test data with low error. Furthermore, the proposed DIC 
system can also control the attitude, e.g. roll, pitch and yaw of the 
hexacopter which are also crucial for the hexacopter movement 
control. 

CCS Concepts 
• Computing methodologies ➝ Artificial intelligence ➝ 

Control methods ➝. Computational control theory 
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1. INTRODUCTION 
Hexacopter is one type of multirotor that is widely studied due to 
its maneuverability, flexibility and the ability to effectively lift 
heavy loads. It is a six rotors nonlinear system than can be operated 
like a helicopter, but it is more secure than a UAV fixed wing. Like 
a helicopter, it is capable to do vertical take-off and landing (VTOL) 
and can fly at low altitudes [1, 2]. The common application of 
hexacopter includes surveillance, military needs, monitoring 
purposes, search and rescue operations and mobile sensor networks 
[1]. In hexacopter, the acceleration during takeoff is not directly 
proportional to the rotational speed of the rotor. However, the rotor 
rotational speed produces direct proportional lift and torque which 
determines the hexacopter movements such as hovering, 
maneuvers and maintains altitude. 
 

A special kind of hexacopter is a heavy-lift hexacopter, which is 
designed specifically to be able to lift heavy loads. The control of 
this heavy-lift hexacopter remains a challenge due to the significant 
necessity to maintain stability and prevent the vehicle from any 
possible failures due to its weight. Altitude is one of the important 
factors in controlling a heavy-lift hexacopter. The control of 
altitude is required so that the hexacopter is able to move to a 
certain height and also able to maintain its stability at such height. 
This is done by increasing or decreasing the speed of the rotor and 
maintaining the coordination of the coupling rotor, which is 
difficult to accomplish since controlling altitude should also 
involve controlling its attitude, in which the coupling parameter and 
the characteristics of the nonlinear system play a very important 
role.  
Several researchers have performed altitude control by using a 
Proportional Derivative (PD) cascade [2, 3], Sliding Mode 
Controller (SMC) [4], Proportional Integral Derivative (PID) [5], 
etc. All of the mentioned controllers rely on complex mathematical 
models, where the nonlinearity problem becomes the main 
disadvantage, so that these methods cannot work properly for a 
nonlinear, multivariable and highly coupled system. 
Some Neural Network methods have been recently proposed to 
overcome this problem [6, 7]. The advantage of neural network 
control is that it is capable to work in a system that is dynamic, 
nonlinear and uncertain [6,7]. The neural network is a parallel 
processor that has the ability to memorize and stores knowledge, 
and then use that knowledge to improve the process of learning [8]. 
The learning process is basically a process of changing the 
connection weight between neurons in the network systematically 
to achieve the capability of mapping a set of the input pattern to a 
corresponding set of output pattern.  
In our previous work [9], attitude control of heavy-lift hexacopter 
using Elman Recurrent Neural Network (ERNN) Direct Inverse 
Control (DIC) has been conducted. However, the data used for 
training and testing were taken from a test bed system where the 
altitude is fixed, so that the data are only valid at a fixed altitude. 
This paper analyzes the use of ERNN DIC to control the altitude of 
a heavy-lift hexacopter. The utilized data for both training and 
testing were the real flight data obtained from real heavy-lift 
hexacopter flight experiment. 
This paper is presented in five sections. The next section explains 
about the dynamic model of the heavy-lift hexacopter. The 
experimental data acquisition is also presented in this section. 
Section III discusses the development of the neural networks based 
control system using DIC scheme method and Elman Recurrent 
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Neural Network learning algorithm. The experimental results and 
the analysis of the proposed controller’s output response will be 
discussed in Section IV. The conclusion is given in Section V. 

2. HEXACOPTER MODELLING 
2.1 Dynamic model of Heavy-Lift Hexacopter 
The dynamic model of a hexacopter can be derived from the layout 
and rotation of its six rotors as depicted in Figure 1. The six rotors 
are analyzed on two reference frames, i.e. the body-fixed frame (B) 
and the earth-fixed frame (E). The hexacopter is moved by these 
coupling rotors. In the figure, the hexacopter’s center of mass is OB 
and the center of gravity in the earth-fixed frame is OE. 

 
 
Figure 1 shows the direction of motor rotation for lift movement. 
In this movement, each adjacent motor have different directions of 
rotation so that they can simultaneously produce lift forces that are 
mutually reinforcing. Coupling motors (M1, M3 and M5, and M2, 
M4 and M6) have different rotation directions in order to provide 
balance for the hexacopter’s movement [4]. Increasing or 
decreasing the rotation speed of one or more of the coupling motors 
will produce rotational and translational movement.  
The translational and rotational position of hexacopter can be 
described by vector ζ = [x,y,z]T and vector η = [ϕ, θ, ψ]T, where ϕ 
is roll movement, θ is pitch movement and ψ is yaw movement. 
Given the linear and angular velocity vectors in the body fixed 
frame, vB= [u,v,w]T and wB=[p,q,r]T, the relationship between (ζ, 
η) and (vB, wB) can be expressed as: 

ζ = R vB                   (1) 
η = T wB            (2) 

where R is the rotation matrix and T is the transformation matrix of 
the body-fixed frame (B) to the earth-fixed frame (E) described as:  

R = R(ψ, z) R(θ, y) R(ϕ, x)        (3) 
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Therefore, the dynamic model of the hexacopter can be expressed 
as:  

( )

( )























+−=

+−=

+−=

+−=

−−=

+−=

⋅⋅⋅⋅

⋅⋅⋅⋅

⋅⋅⋅⋅

⋅⋅

⋅⋅

⋅⋅

zzzyyxx

yyyyxxzz

xxxzzyy

III

III

III

m
u

gZ

m
u

Y

m
u

X

/))((

/))((

/))((

)cos(cos

sincossinsincos

cossincossinsin

1

1

1

τθφψ

τψφθ

τψθφ

φθ

φψψθφ

φθψφψ

                (6) 

where  are the hexacopter’s linear accelerations in the E axis, 
while  are the hexacopter’s angular accelerations in the B 
axis, m is the mass of the hexacopter, g is the gravity speed, and 

 are the moments of body inertia at xyz-axis. 

Meanwhile, the equation to reflect the relationship between the 
basic movement of a hexacopter and its rotor rotational speed can 
be expressed as:  

( )
( )
( )

( )














+−+−+−=
+−+−+−=

+++−−−=

++−−=

+++++=

654321

2
6

2
5

2
4

2
3

2
2

2
14

2
5

2
4

2
3

2
6

2
2

2
13

2
6

2
5

2
3

2
22

2
6

2
5

2
4

2
3

2
2

2
11

ωωωωωωω
ωωωωωω

ωωωωωω

ωωωω

ωωωωωω

dU
blU
blU

bU                     (7) 

In equation (7),  is the vertical thrust,  is the roll torque,  is 
the pitch torque,  is the yaw torque,  is the propeller speed, b 
is the thrust factor, d is the drag factor, and l is the distance between 
the hexacopter’s centre spot and the centre spot of its propeller. 
The six degrees of freedom (DOF) of the hexacopter is reflected by 
the six translational and rotational positions X, Y, Z, ϕ, θ, ψ as in 
equation (6). These positions are controlled by four inputs or 
control signals, i.e. U1, U2, U3, U4, as in equation (7). Since the 
output signals outnumbered the input signals, this system can be 
categorized as an under-actuated system. Thus, the control system 
of the heavy-lift hexacopter is designed in to be divided into two 
parts, i.e. inner loop and outer loop, as can be seen in Figure 2. The 
inner loop control is used to control the hexacopter attitude and 
altitude, which consist of roll, pitch, yaw, and z movement. 
Meanwhile, the outer loop control is used to control the x and y 
movement which directly depicts the real position of the hexacopter. 

 
 

 

2.2 Data Acquisition 
This study utilizes the same heavy-lift hexacopter that was 
developed in the University of Indonesia as already described in [9]. 
The data utilized for both training and testing are the data obtained 
from real heavy-lift hexacopter flight experiment. To obtain the 
data, the hexacopter was controlled by a remote control to fly with 
helix trajectory to a certain height (26.04 meters) and then back 
down again, also with helix trajectory. This helix up-and-down 
motion was chosen by considering the numerous movements 
involved, so that the characteristics of the obtained data can be 
significantly enriched. The flight data were stored on the on-board 
memory on the flight controller and the data acquisitions were 
performed two times, one for the training data (Figure 3 and 4) and 
the other for the test data (Figure 5 and 6). Figure 3 and 5 shows 
that the roll and pitch data ranged from -15o to 15o, whereas the yaw 
data ranged between 258o to 302o. Meanwhile, Figure 4 and 6 
shows the control inputs, e.g. the motor rotational speeds, which 
were represented by the motors Pulse Width Modulation (PWM). 

Figure 1. Orientation of Hexacopter 
 
 

 
 

Figure 2. Block Diagram of Hexacopter Control System 
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3. DIRECT INVERSE CONTROL BASED 
ON ELMAN RECURRENT NEURAL 
NETWORK 

Neural Network Direct Inverse Control (DIC) is one of the control 
methods that has the ability to control a nonlinear plant by 
conducting training on the prevailing inverse model as opposed to 
the plant to eliminate the dynamic properties [11-13]. It is desired 
that the output of the inverse model is the same as the 
required/desired plant input so that the plant can be correctly 
controlled and perform a similar response to the given reference 
signal. By directly cascading the inverse model (NN INV) and the 
plant model (NN ID) as in Figure 7, it is desired that the resulted 
plant output y(k) is the same as the input of the DIC system or the 
reference signal r(k). In other words, the DIC system transfer 
function is expected to be as near as possible to 1 [11].  

 
 

 

3.1 IDENTIFICATION SYSTEM 
In this study, the identification system of a heavy-lift hexacopter is 
obtained by using neural networks with backpropagation learning 
algorithm. The neural network configuration for this identification 
system as the plant model consist of an input layer with 26 neurons, 
a hidden layer with 35 neurons and an output layer with 4 neurons. 
The training was conducted by using the training data set, following 
the training mechanism as depicted in Figure 8a. The result of this 
training mechanism is described in the next section. 
 
 
 

Figure 3. Heavy-Lift Hexacopter Movement for 
Training 

 
 
 
 

Figure 4. Motor Speed (PWM) of the Heavy-Lift 
Hexacopter for Training 

 
 
 
 

Figure 5. Heavy-Lift Hexacopter Movement for Testing 
 
 
 
 

Figure 6. Motor Speed (PWM) of the Heavy-Lift 
Hexacopter for Testing 

 
 
 
 

 
 
 
 
 

Figure 7. Direct Inverse Control (DIC) scheme 
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3.2 INVERSE MODEL USING ELMAN 
RECURRENT NEURAL NETWORK 
The structure of the inverse model training for the DIC system is 
depicted in Figure 8b. The neural network configuration for the 
inverse model consists of a single input layer, a single hidden layer, 
and a single output layer with 24, 35, and 6 neurons, respectively.  
Elman Recurrent Neural Network (ERNN) learning algorithm was 
utilized to obtain the most optimal weight of neurons of the inverse 
model. Compared to the original backpropagation algorithm, ERNN 
algorithm has the advantage of being able to eliminate the local 
minimum and also capable of working at higher order dynamical 
system [10]. As shown in Figure 9, ERNN algorithm has one 
additional layer namely a context layer that acts as the memory in 
the inner state to map the dynamic attitude so that the system has the 
ability to adapt over time. The uniqueness of ERNN is the existence 
of feedback connection that carries interference information (noise) 
during the previous entries which will be accommodated for the next 
input. Due to the nature of this feedback, the unit can continue to 
recycle information through the network to the next steps and time, 
and thus an abstract representation of time is produced. ERNN has 
been widely researched for the purpose of identification, predicting, 
fault diagnosis and forecasting, identification of spectral signal of 
music [10-14]. ERNN requires longer training period and has low 
convergence speed so that the algorithm is less suited to an 
application that is critical [15].  

 
 

Figure 9 shows the basic architecture of ERNN algorithm that 
consists not only input layer, hidden layer and output layer but also 
an additional layer called a context layer (C(k-1)). Given that the 
input is x(k), the output is yink(k) and the total input to the hidden 
layer j is zinj(k), then the equations of the architecture are: 

∑ −+−= )()1()()1()( kxkvkCkukz ijiijinj
                           (8) 

         )()( injj zfkz =                       (9) 

         )1()( −= kzkC ij
                                         (10) 

 ∑ −= )()1()( kzkwky jijink
                   (11) 

where wij is the weights of the hidden layer to the output layer, uij 
is the weights of the context layer to the hidden layer, vij is the 
weights of the input layer to the hidden layer and f is the activation 
function of the hidden layer. In general, the ERNN training is 
similar to the well-known backpropagation training, but with 
adaptive learning rate. This mechanism can prevent the system 
from the local minimum trap. Like backpropagation learning 
algorithm, the training was done iteratively by minimizing the 
resulting error Ek or the difference between the actual output yd(k) 
and the output generated by the network yink(k) expressed as:  

2))()((
2
1 kykyE inkdk −=                                     (12) 

Based on the error value in equation (12), the weights of each layer 
can be modified by the following equations: 

     )())()(()( kzkykykw jinkdij −=∆ η                                         (13) 

( ) )(')1()()()( kxzfkwkykykv injiinkdij −−=∆ η                 (14) 

)1()1())()(()(, −−−=∆ kzfzkwkykyku jinjiinkdji η                  (15) 

where η is the learning rate value. 
 

4. EXPERIMENTAL RESULT 
The test result of identification training is depicted in Figure 10. 
The training reached its convergence in 35,000 epoch and the 
obtained Mean Sum Square Error (MSSE) for this training was 6.4 
x 10-4. On the testing stage, the obtained MSSE was 0.0122. This 
low error value shows that the neural network identification system 
can represent the heavy-lift hexacopter plant.  

 

 

The test result for the inverse model is shown in Figure 11. The 
training required 18,000 epoch to produce a training MSSE of  
0.0112.  

  

Figure 8. Training configuration scheme a) system 
identification, b) Inverse model 

 
 
 
 

Figure 9. Elman Recurrent Neural Network Architecture 
 
 
 
 

Figure 10. System Identification Test Responses 
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After training and subsequent testing, the weights obtained for the 
NN ID and NN INV configurations were then utilized in the Neural 
Network DIC system. This DIC system was then tested using the 
test data as already shown in Figure 5 and 6.  
The result of this test is depicted in Figure 12. The figure reflects 
that the outputs of the simulated Neural Network DIC shown in red 
curves are in good agreement with the real test data shown in blue 
curves. The corresponding MSSE which represents roll, pitch, yaw 
and altitude for this Neural Network DIC test result is 0.0256.  

 
 

The main focus of the study is the altitude control, and its result can 
be seen on the most bottom graph in Figure 12. The graph revealed 
that the altitude of the simulated Neural Network DIC had been able 
to match the real altitude of the hexacopter, although small 
discrepancies are still observed at certain heights.  

5. CONCLUSIONS 
This paper has shown that Elman Recurrent Neural Network can be 
utilized to control the altitude of a heavy-lift hexacopter with low 
error and good system response. Furthermore, the proposed Elman 
Recurrent Neural Network based Direct Inverse Control (ERNN-
DIC) also revealed good performance in controlling the attitude of 
heavy-lift hexacopter, e.g. roll, pitch and yaw. In the future, the 
proposed ERNN-DIC can also be used to control the real position 
of the heavy-lift hexacopter. The required investigations for this 
purpose are still on-going. 

6. REFERENCES 
[1] G. M. Hoffmann, H. Huang, S. L. Waslander, and C. J. 

Tomlin, 2011,"Precision flight control for a multi-vehicle 
quadrotor helicopter testbed," Control engineering practice, 
vol. 19, pp. 1023-1036. 

[2] N. D. Salim, D. Derawi, H. Zamzuri, M. A. A. Rahman, and 
K. Nonami, 2015,"Robust position hold control of hexarotor 
UAVs," in 2015 IEEE International Symposium on Robotics 
and Intelligent Sensors (IRIS), pp. 21-26.  

[3] O. Ahmed, M. Latief, M. Ali, and R. Akmeliawati, 
2015,"Stabilization and control of autonomous hexacopter 
via visual-servoing and cascaded-proportional and derivative 
(PD) controllers," in Automation, Robotics and Applications 
(ICARA), 2015 6th International Conference on, pp. 542-
549. 

[4] S. Busarakum and V. Srichatrapimuk, 2014,"The design of 
sliding mode control of a hexarotor," in Systems, Process and 
Control (ICSPC), 2014 IEEE Conference on, pp. 47-52. 

[5] T. M Hassan, S. Faiz, D. Hazry, J. M Kamran, and A. W. 
Faizan, 2013, "Disturbance and noise rejection controller 
design for smooth takeoff/landing and altitude stabilization 
of quad-rotor,". 

[6] V. Artale, M. Collotta, G. Pau, and A. Ricciardello, 
2013,"Hexacopter trajectory control using a neural network," 
in AIP Conference Proceedings, pp. 1216-1219.  

[7] V. Artale, M. Collotta, C. Milazzo, G. Pau, and A. 
Ricciardello, 2016, "Real-Time System based on a Neural 
Network and PID Flight Control," Appl. Math, vol. 10, pp. 
395-402. 

[8] B. Kusumoputro, K. Priandana, and W. Wahab, 
2015,"System Identification and Control of Pressure Process 
RIG® System using Backpropagation Neural Networks," 
ARPN Journal of Engineering and Applied Sciences, vol. 
VOL. 10, pp. 7190-7195, September 2015. 

[9] B. Kusumoputro, H. Suprijono, M. A. Heryanto, and B. Y. 
Suprapto, 2016,"Development of an attitude control system 
of a heavy-lift hexacopter using Elman recurrent neural 
networks," in Automation and Computing (ICAC), 2016 22nd 
IEEE International Conference on, pp. 27-31. 

[10] S. Ding, Y. Zhang, J. Chen, and W. Jia, 2013, "Research on 
using genetic algorithms to optimize Elman neural 
networks," Neural Computing and Applications, vol. 23, pp. 
293-297. 

[11] D. Xianglei, Z. Shuguang, H. Lvchang, and H. Rong, 
2011,"The Neural Network Direct Inverse Control of Four-
wheel Steering System," in 2011 Third International 
Conference on Measuring Technology and Mechatronics 
Automation, pp. 865-869. 

[12] P. Wang, B. Cheng, W. Xing, and H. Ding, 2010,"The Direct 
Inverse-Model Control Based on Neural Networks for 
Inverts," in 2010 International Conference on Measuring 
Technology and Mechatronics Automation, pp. 855-858. 

[13] M. T. Frye and R. S. Provence, 2014, "Direct Inverse Control 
using an Artificial Neural Network for the Autonomous 
Hover of a Helicopter," in 2014 IEEE International 
Conference on Systems, Man, and Cybernetics (SMC), pp. 
4121-4122. 

Figure 11. Inverse model Test Responses 
 
 
 
 

Figure 12. Neural Network based DIC Test Responses 
 
 
 
 

139



[14] L. Ren, Y. Liu, Z. Rui, H. Li, and R. Feng, 
2009,"Application of Elman Neural Network and MATLAB 
to Load Forecasting," in Information Technology and 
Computer Science,  ITCS 2009. International Conference on, 
pp. 55-59. 

[15] W. Chen, Q. Gong, C. Yin, T. Wang, and J. Yao, 2010,"An 
Elman neural network application on dynamic equivalents of 
power system," in Electrical and Control Engineering 
(ICECE), 2010 International Conference on, pp. 376-3

 

140




