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Abstract—The aim of this paper is to compare the 
performances of ARIMA, Neural Network and Linear 
Regression models for the prediction of Infant Mortality 
Rate. The performance comparison is based on the 
Infant Mortality Rate data collected in Indonesia during 
the years 1995 – 2008. We compare the models using 
performance measures such as Mean Absolute Error 
(MAE), Mean Absolute Percentage Error (MAPE) and 
Root Mean Square Error (RMSE). The results show that 
the Neural Network model with 6 input neurons, 10 
hidden layer neurons and using hyperbolic tangent 
activation functions for the hidden and output layers is 
the best among the different models considered. 
 
Keywords: ARIMA, Neural Network, Linear Regression, 
Infant Mortality Rate, Mean Absolute Error, Mean 
Absolute Percentage Error, Root Mean Square Error 

I. INTRODUCTION 
The infant mortality Rate (IMR) in a community is a 

widely used indicator of general health status. The IMR 
reflects a broad range of social, economic and medical 
conditions. Communities with problems such as 
unemployment, poverty, and low literacy tend to have 
higher infant mortality rates [1]. In Indonesia, the mortality 
statistic such as infant mortality is regarded as one of the 
important instruments to monitor and evaluate national 
health development.  

The time series forecasting is employed in various 
applications to predict the future value using the past time 
series data. Many models have been applied in time series 
forecasting such as ARIMA, Logistic Regression and 
Neural Network. Choosing the best model is needed in the 
time series forecasting.  These models have been used for 
different applications and from the result reported, it is clear 
that the performances of these models vary depending on 
the type of data used. In this paper, we present the 
performance comparison of these models for specific 
application, namely, prediction of IMR which is very useful 

for healthcare management. From this point of view, the 
result reported in this paper may be considered to be a 
significant contribution in the area of healthcare 
management.  

The prediction or forecasting of IMR assumes 
importance for health departments since a good and accurate 
prediction is very helpful in devising appropriate action 
plans.  

II. PREDICTION MODELS USED 
This section describes the theory of the various models 

implemented in this paper.  

A.  ARIMA Model 
Time series analysis has several objectives: modeling, 

forecasting and controlling. Forecasting deals with the issue 
of constructing models and methods that can be used to 
produce accurate short-term predictions [2]. The aim of 
modeling is to build a statistical model that adequately 
represents the long-term behavior of a time series. These 
goals are not necessarily identical. While the former 
frequently leads to a black box model that produces 
predictions, the objective of the latter is more towards 
finding the model that has generated the data.  

A univariate time series {Xt} is a series of observations 
of a variable over discrete intervals of time. These 
observations are equally spaced in time.  

{ } 1 2 3( , , ,..., )t tX x x x x=
                               (1)

 

The time series analysis involves modeling the series as a 
function of its past observations and errors (residuals). 
Error (et) is the difference between the observed value (xt) 
and the forecast value ( ˆtx ): 

ˆt t te x x= −                                                         (2) 

The two fundamental building blocks of a linear 
univariate time series model are the autoregressive (AR) 
model and moving average (MA) model. The forecast in AR 
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model is a function of its past observations, while in a MA 
model the forecast is a function of its past errors. 

An autoregressive model of order p, AR(p) is given by   

    1 1 2 2ˆ ...t t t p t px x x xφ φ φ− − −= + + +
                             (3)

 

A moving average model of order q, MA(q) is given by 

     1 1 2 2ˆ ...t t t q t qx e e eθ θ θ− − −= + + +
                              (4) 

The order of the model is defined by the highest term 
present in the describing equation. The order of an AR 
polynomial is denoted by p and that of a MA polynomial is 
denoted by q.  

An autoregressive moving average (ARMA) process is 
a combination of autoregressive and moving average 
polynomials in a single equation. An ARMA (p, q) model is 
defined by [3]: 

1 1 2 2 1 1 2 2... ...t t t p t p t t t q t qx x x x e e e eφ φ φ θ θ θ− − − − − −= + + + + + + + +        (5)
 

where the orders of AR and MA polynomials are p and q 
respectively. 
In order to make the notational form simple, a special 
operator called the backshift operator (B) is used. The 
backshift operator is defined by 

   
j

t t jB x x −=
                                                                 (6)

 

where  j = 0, 1, 2, ... 
Finally, an ARMA (p, q) model can be expressed as 

   ( ) ( )t tB x B eφ θ=                                                        (7)                                    

where φ (.)  and θ(.) are the pth and qth degree polynomials 
are given by  [4]: 

      
2

1 2( ) 1 ... p
pz z z zφ φ φ φ= − − − −                   

and  (8)   

     
2

1 2( ) 1 ... q
qz z z zθ θ θ θ= + + + +                    

ARMA models employed for time series data using 
ordinary differencing are called autoregressive integrated 
moving average (ARIMA) models. In an ARIMA (p, d, q) 
model, the term d denotes the order of differencing. An 
ARIMA model with order of differencing d can be 
expressed as [4]: 

           ( )(1 ) ( )d
t tB B x B eφ θ− =       (9) 

B. Neural Network Model 
Neural networks (NN) for forecasting have been 

investigated by many researchers over past several years. 
The motivation for using neural networks is based on the 
fact that these models are capable of handling non-linear 
relationships.  Examples of neural networks used for time 
series forecasting purposes can be found in [5, 6, 7, 8]. 

Neural Network model consists of different layers which are 
connected to each other by connection weights. Between the 
extremities of the input layer and the output layer are the 
hidden layers. The nodes in each layer are connected by 
flexible weights, which are adjusted based on the error or 
bias.  

The function of the input layer is for data entry, data 
processing takes place in the hidden layer and the output 
layer functions as the data output result. Fig. 1 shows the 
architecture of a general multilayer backpropagation  neural 
network. 
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Figure 1.  A general Multilayer Backpropagation Neural Network 
 
In this architecture, the response value Y(x) is computed as 
[5]: 

0 0
1 1

( ) ( )
H n

j j ji i
j i

Y x xβ β ψ γ γ
= =

= + +∑ ∑                        (10) 

where (β0, β1, …, βH, γ10,…, γHn) are the weights or 
parameters of the Neural Network. The non linearity enters 
into the function Y(x) through the so called activation 
function ψ. 

Information processing in every neuron is done by 
summing the multiplication result of connection weights 
with input data. The result is transferred to the next neuron 
through the activation function. There are several kinds of 
activation functions ψ, such as sigmoid, bipolar sigmoid and 
hyperbolic tangent. 
The Hyperbolic Tangent activation function [9] given 
below: 

     

     
( ) tanh( )

j j

j j

x x

j j x x
e ex x
e e

ψ
−

−
−= =
+                                  (11) 
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C.  Linear Regression 
The regression model describes the mean of the 

normally distributed dependent variable Y as a function of 
the predictor or independent variable x [10]: 

      0 1  xi i iY β β ε= + +                                          (12) 

where Yi is the value of the response or dependent variable 
from the i-th pair, β0 and β1 are the two unknown 
parameters, xi is the value of the independent variable from 
the i-th pair, and εi is a random error term. 
The predicted or estimated or fitted values of the regression 
model are calculated as [11]: 

    0 1
ˆ xi iY b b= +      (13) 

The parameters b0 and b1 in the above equation are 
computed as: 

  b0 = µ - β1 (n+1)/2 

  b1  = [θ  - n µ (n+1)/2] / [ 2σ  - n (n+1)² /4] 

where  

µ  = 
1

/
n

i
i

x n
=
∑     

1
 .

n

i
i

i xθ
=

=∑                  (14) 

     
2 2

1

n

i
i

xσ
=

=∑
    

 

This model is referred to as the linear regression (LR) 
model [11]. It is linear because the independent variable 
appears only in the first power; if we plot the mean of Y 
versus x, the graph will be a straight line with intercept b0 
and slope b1. 

D. Performance Measures 
The prediction models are evaluated in terms of their 

ability to forecast the future values. Several measures are 
used in comparing forecasting performance of different 
models. The most common measure is the Root Mean 
Square Error (RMSE). The other measures that are used are 
the mean absolute error (MAE) and the mean absolute 
percentage error (MAPE).  

The Root Mean Square Error and mean absolute 
percentage error are used for comparison of model accuracy. 
Lower values are better. The MAE measures the average 
magnitude of the error. The RMSE is likely to be used for 
data that has the undesirable large error. And both MAE and 
RMSE can be used together to diagnose the variation in the 
errors in a set of forecast. If value of RMSE > MAE then 
there is a variation in the errors. They are negatively-
oriented scores. Lower values are better. 
The three forecast error statistics are computed as follows: 

1) Mean Absolute Error (MAE) 
The MAE measures the average magnitude of the errors in a 
set of forecasts, without considering their direction. [12]: 

 
         

                                                                               (15) 
 

2) Mean Absolute Percentage Error (MAPE)  
MAPE produces a measure of relative overall fit [12]: 

     
1

ˆ
*100

n t t

t t

Y Y

YMAPE
n

=

−

=
∑

                            (16)
 

3) Root Mean Square Error (RMSE) 
The RMSE is a quadratic scoring rule which measures the 
average magnitude of the error. [12, 13]  

          
 

                                                                              (17) 
                   

III. DATA 
The infant mortality rate data used in this study are 

collected in Indonesia from Indonesian Health Profile, 
Ministry of Health Republic of Indonesia. Table 1 shows the 
IMR data during 1995-2008.  

 
Table 1. IMR in Indonesia during 1995-2008 

 
NO YEAR IMR 
1 1995 55.00 
2 1996 54.00 
3 1997 52.00 
4 1998 50.00 
5 1999 44.00 
6 2000 47.00 
7 2001 50.00 
8 2002 35.00 
9 2003 38.00 

10 2004 36.00 
11 2005 36.00 
12 2006 34.00 
13 2007 32.00 
14 2008 31.00 

 
The statistical features of the IMR data such as the 
minimum, maximum, mean, standard deviation and 
Variance are shown in Table 2. 

 
     Table 2. . Descriptive Statistics of IMR in Indonesia  
 

Name Min Max Mean Std. Dev. Variance 

IMR 31.00 55.00 42.4286 8.72410 76.110
 

1

ˆ
n

t t
t

Y Y
MAE

n
=

−
=
∑

( )2

1

ˆ
n

t t
t

Y Y
RMSE

n
=

−
=
∑
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IV. RESULTS 
In this section, we compare the three prediction 

models. The models are based on ARIMA, Neural Network 
and Linear Regression. The results achieved by each 
implemented model are discussed below. 

A.  ARIMA Model 
We compute prediction using ARIMA models with 

different parameter (p, d, q) values. The result of the time 
series forecasting with different ARIMA models is shown in 
Table 3. 

Table 3. Result of the time series forecasting with ARIMA 
 

Actual ARIMA ARIMA ARIMA ARIMA ARIMA ARIMA ARIMA
Data (1,0,0) (0,0,1) (1,0,1) (0,1,1) (1,1,0) (1,1,1) (0,1,0)

1995 55 42.62 42.42 42.94
1996 54 53.40 48.14 53.60 53.00 53.11 53.01 53.15
1997 52 52.53 45.78 53.10 51.49 51.72 51.44 52.15
1998 50 50.79 46.25 51.54 49.66 50.16 49.66 50.15
1999 44 49.05 44.79 49.78 47.74 48.16 47.76 48.15
2000 47 43.82 41.92 45.06 44.99 43.92 45.64 42.15
2001 50 46.43 45.68 46.32 43.32 42.96 43.07 45.15
2002 35 49.05 45.20 48.75 42.27 45.96 41.29 48.15
2003 38 35.98 35.87 38.29 39.36 38.89 40.63 33.15
2004 36 38.60 43.79 38.42 37.20 33.96 37.52 36.15
2005 36 36.85 37.41 36.99 35.08 34.16 35.38 34.15
2006 34 36.85 41.51 36.71 33.16 33.28 33.12 34.15
2007 32 35.11 37.59 35.20 31.22 32.16 31.21 32.15
2008 31 33.37 38.83 33.44 29.28 30.16 29.29 30.15
2009 32.50 37.39 32.37 27.40 28.72 27.26 29.15

MAE 3.853 5.790 3.737 2.183 2.543 2.184 2.781
MAPE 8.452 13.591 9.135 5.412 6.334 5.413 7.013
RMSE 6.022 7.133 6.176 3.375 4.337 3.450 4.705

Year

 
  
From Table 3, it is noted that the smallest values of MAE, 
MAPE and RMSE are obtained for the model 
ARIMA(0,1,1). So, we can conclude that ARIMA(0,1,1)  is 
the best ARIMA model. 
 Fig. 2 illustrates the actual and predicted graph of 
ARIMA models, where the horizontal axis represents the 
time (year) and the vertical axis is the value of IMR.  
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Figure  2. The actual and prediction graph of ARIMA Model 

B. Neural Network Model 
 We also computed prediction using a multi-layer 
perceptron Neural Network model. Architecture 
configurations with different numbers of input and hidden 

layer neurons were tested to determine the optimum setup. 
Similarly, different activation functions such as hyperbolic 
tangent, bipolar sigmoid and sigmoid functions were tested. 
From the experimental results, it is found that the neural 
network model with 6 input neurons, 10 hidden layer 
neurons and using hyperbolic tangent activation functions 
for the hidden and output layers yields the minimum values 
for MAE, MAPE and RMSE.  

 
Table 4. Result of the time series forecasting with Neural Network 

 
Actual
Data

6 5 4 3 2 1
1995 55
1996 54 50.10
1997 52 52.24 49.63
1998 50 47.87 48.77 48.58
1999 44 43.62 47.04 43.22 47.36
2000 47 47.19 47.54 45.73 47.38 42.64
2001 50 49.53 49.66 49.52 50.22 46.94 45.20
2002 35 35.28 35.17 35.55 35.01 38.85 47.36
2003 38 38.04 37.90 37.86 38.43 38.72 34.50
2004 36 36.20 36.11 36.33 35.67 37.66 36.95
2005 36 36.09 35.97 35.57 34.87 34.41 35.26
2006 34 34.17 33.96 32.08 33.91 33.89 35.26
2007 32 32.02 31.41 32.64 32.93 31.63 33.82
2008 31 30.42 31.62 32.30 31.57 30.53 32.69
2009 31.73 31.48 32.45 31.11 30.25 32.23

MAE 0.234 0.242 0.672 0.923 1.204 3.271
MAPE 0.395 0.474 1.453 1.560 2.583 6.967
RMSE 0.300 0.322 0.842 1.287 1.649 4.389

Year
FORECASTING

NO. OF INPUT NEURONS

 
 
The results of the time series forecasting using the optimum 
Neural Network model are shown in Table 4. For the sake 
of comparison, the results obtained for the different number 
of input neurons are also shown in Table 4. 
 Fig 3. Illustrates the actual and predicted graph of the 
optimum Neural Network models, where the horizontal axis 
represents the time (year) and the vertical axis is the value 
of IMR.  
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Figure 3. The actual and prediction graph of Neural Network 
Model 

C. Linear Regression  
 The Linear Regression model for time series 
forecasting is obtained as follows:  
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      57.198 -1.969 iY i=                                                (18)
 where Yi   is the predicted value for i-th year. 
 The result of the time series forecasting with Linear 
Regression model is shown in Table 5. 

Table 5. Result of the time series forecasting with Linear Regression 
 

Actual
Data

1995 55 55.23
1996 54 53.26
1997 52 51.29
1998 50 49.32
1999 44 47.35
2000 47 45.38
2001 50 43.41
2002 35 41.44
2003 38 39.47
2004 36 37.51
2005 36 35.54
2006 34 33.57
2007 32 31.60
2008 31 29.63
2009 27.66

MAE 1.858
MAPE 4.533
RMSE 2.767

Year FORECASTING

 
  
Fig 4. Illustrates the actual and predicted graph of Linear 
Regression model where the horizontal axis represents the 
time (year) and the vertical axis is the value of IMR. 
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Figure  4. The actual and prediction graph of Linear Regression 
Model 

D. Comparison of Models  
Table 6 shows the comparison of MAE, MAPE and 

RMSE obtained with ARIMA, Neural Network and Linear 
Regression models.  

From Table 6, it is seen that the best model for the 
prediction of Infant Mortality Rate is the Neural Network 
Model with 6 input neurons, 10 hidden layer neurons 
(NN(6, 10)) using hyperbolic tangent activation functions 

 
 
 

Table 6. Performance Measure of Models 
 

MAE MAPE RMSE
ARIMA(1,0,0) 3.853 8.452 6.022
ARIMA(0,0,1) 5.790 13.591 7.133
ARIMA(1,0,1) 3.737 9.135 6.176
ARIMA(0,1,1) 2.183 5.412 3.375
ARIMA(1,1,0) 2.543 6.334 4.337
ARIMA(1,1,1) 2.184 5.413 3.450
ARIMA(0,1,0) 2.781 7.013 4.705
NN(6,10) 0.234 0.395 0.300
NN(5,10) 0.242 0.474 0.322
NN(4,10) 0.672 1.453 0.842
NN(3,10) 0.923 1.560 1.287
NN(2,10) 1.204 2.583 1.649
NN(1,10) 3.271 6.967 4.389
LR 1.858 4.533 2.767

MODELS
PERFORMANCE MEASURE

  
 

Fig.5 compares the performance measures of different 
models graphically. The horizontal axis represents the 
models and the vertical axis is the values of performance 
measure. 
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Figure  5. Comparison performance measure of models 
 

V. CONCLUSION 
This paper has described three prediction models for 

Infant Mortality Rate. The prediction was done using 
ARIMA, Neural Network and Linear Regression models. 
The performances of the models are compared using the 
data of Infant Mortality Rate collected during 1995 – 2008 
in Indonesia.  Performance measures such as Mean Absolute 
Error, Mean Absolute Percentage Error and Root Mean 
Square Error have been employed for comparison. From the 
results, it was found that the Neural Network model with 6 
input neurons, 10 neurons in the hidden layer and using 
hyperbolic tangent activation functions for the hidden and 
output layers yields the best forecasting result. 
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