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Abstract – Prediction models based on different concepts 
have been proposed in recent years. The accuracy rates 
resulting from linear models such as exponential 
smoothing, linear regression (LR) and autoregressive 
integrated moving average (ARIMA) are not high as 
they are poor in handling the nonlinear relationships 
among the data.  Neural network models are considered 
to be better in handling such nonlinear relationships. 
Healthcare time series data such as Morbidity of 
Tuberculosis (MTB) consist of complex linear and 
nonlinear patterns and it may be difficult to obtain high 
prediction accuracy rates using only linear or neural 
network models. Hybrid models which combine both 
linear and neural network models can be used to obtain 
high prediction accuracy rates. In this paper, we propose 
an adaptive hybrid algorithm to achieve the best results 
for time series prediction in healthcare. We also make a 
comparison of the proposed model with other known 
models based on accuracy rates.  
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I. INTRODUCTION 
Many prediction models have been proposed recently for 

improving accuracies in time series prediction. The 
accuracy of a forecasting method would depend not only on 
the model but also on the complexity of the data. Hence, it 
is important to choose the best model based on the 
complexity of data in time series prediction.   

In the real-world, the time series data often contain linear 
and nonlinear patterns. Linear models have limitations in 
handling the nonlinear relationships among the data.  Neural 
network models are considered to be better in handling such 
nonlinear relationships, but they may not be efficient to deal 
with the linear pattern.  

Many models have been applied in time series 
forecasting such as autoregressive integrated moving 
average (ARIMA) [1, 2], linear regression (LR)[3, 4] and 
neural network [5, 6, 7]. Hybrid models combining ARIMA   

and neural network models have also been used for some 
applications [8].  

In this paper, we propose an adaptive hybrid algorithm 
which selects the appropriate combination of linear 
nonlinear models depending on the complexity of data. The 
proposed model is applied for a specific application, 
namely, prediction of morbidity of tuberculosis (MTB). 
Prediction of MTB assumes importance in healthcare 
management as it helps in devising appropriate action 
plans. The MTB data consist of complex linear and 
nonlinear patterns and it may be difficult to obtain high 
prediction accuracy rates using only linear or nonlinear 
models. An adaptive hybrid algorithm is proposed in this 
paper which can be used  for predicting complex time series 
data such as MTB. Depending on a linearity test, the hybrid 
algorithm will select either a linear-nonlinear combination 
or a nonlinear-linear combination. The performances of four 
linear models, namely, exponential smoothing (single and 
double), linear regression (LR) and autoregressive 
integrated moving average (ARIMA) models are compared 
initially and the best model is selected based on the 
performance measure. For the nonlinear model, we use 
multi -layer perceptron neural network (MLP). 

The paper is organized as follows. In the next section, 
we review different models used such as exponential 
smoothing, linear regression, ARIMA, neural network and 
hybrid models. In section 3, we present the adaptive hybrid 
algorithm for time series prediction. Section 4 describes the 
data used for simulation experiments. The performance 
measures of the different models and also a comparison of 
these results are presented in Section 5.  Section 6 contains 
the concluding remarks. 

II. MODELS USED 
This section describes the linear and nonlinear models 

implemented in this paper.  Linear models consist of Single 
and Double Exponential Smoothing, Linear Regression and 
ARIMA. The nonlinear model makes use of MLP neural 
network.  
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A. Linear Models 
1) Exponential Smoothing Model 

The exponential smoothing model assumes that the data 
are closer to the current data, which is considered to be 
more important for predicting the future data. There are 
several types of the models that are used in exponential 
smoothing, such as single exponential smoothing and 
double exponential smoothing.  
The equation of single exponential smoothing model is 
given:[9] 

1ˆ ˆ(1 )t t ty y yα α −= + −     (1) 

where α is the smoothing constant.  
And the equation of double exponential smoothing model is 
given: [9] 
Lt  = α yt + (1- α )( Lt-1+ Tt-1) 
Tt  = β (Lt - Lt-1)+(1- β )Tt-1 
ˆ   =t p t ty L pT+ +                                                                     (2) 

where α and β are the smoothing constants, L0 = y1 and  
T0=0. 
yt : Actual data at time t, t=1,...,n 
L, T : The level and trend estimate at time t 
ˆt py +  : The forecast (prediction) of time t+p made at 

time t and p periods into the future. 
2) Linear Regression  Model 

Linear regression model is one of the most commonly 
used methods for forecasting. The regression model 
describes the mean of the normally distributed dependent 
variable y as a function of the predictor or independent 
variable x [10]: 

0 1  xi i iy β β ε= + +                                                            (3)                                                                     
 where yi is the value of the response or dependent variable 

from the i-th pair, β0 and β1 are the two unknown 
parameters, xi is the value of the independent variable from 
the i-th pair, and εi is a random error term. 

The predicted or estimated or fitted values of the 
regression model are calculated as [11]: 

0 1ˆi iy b b x= +                                                                    (4)                                                 
The parameters b0 and b1 in Eq. (4) are computed as [12]: 
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This model is referred to as the linear regression (LR) 
model. It is linear because the independent variable appears 
only in the first power; if we plot the mean of Y versus x, the 
graph will be a straight line with intercept b0 and slope b1. 

3) ARIMA Model 
Time series analysis has several objectives such as 

modeling, forecasting and controlling. Forecasting deals 
with the issue of constructing models and methods that can 
be used to produce accurate short-term predictions [13]. 

 The forecast in autoregressive (AR) model is a function 
of its past observations (x), and the forecast in a moving 
average (MA) model is a function of its past residuals (e). 
An autoregressive model of order p is given by:  

1 1 2 2ˆ ...t t t p t px x x xφ φ φ− − −= + + +
   

                                  (6)  
and a moving average model of order q is given by

 
1 1 2 2ˆ ...t t t q t qx e e eθ θ θ− − −= + + +                   (7)  

 
The order of an autoregressive polynomial is denoted by p 
and that of a moving average polynomial is denoted by q.  

An autoregressive moving average models are made up 
autoregressive (AR(p)) part and a moving average (MA (q)) 
part. An ARMA (p, q) model is defined by [14]: 

1 1

p q

t i t i t j t j
i j

x x e eφ θ− −
= =

= + +∑ ∑          (8) 

where et is the random error at time t, iφ  (i= 1, 2, …, p) and 
θj (j= 1, 2, …, q) are the model parameters to be  estimated. 
The orders of autoregressive and moving average 
polynomials are p and q respectively. The backshift operator 
(B) is used to make the notational form simple. The 
backshift operator is defined by: 

j
t t jB x x −=                       (9)

 where j = 0, 1, 2, ... 
An autoregressive moving average of order p and q, 

ARMA (p, q) model can be expressed as 
( ) ( )t tB x B eφ θ=                                               (10)                      

where φ (.)  and θ(.) are the pth and qth degree polynomials 
are given by  [14]: 

2
1 2( ) 1 ... p

pz z z zφ φ φ φ= − − − −  
and         (11) 

2
1 2( ) 1 ... q

qz z z zθ θ θ θ= + + + +                              

An autoregressive moving average (ARMA)  models 
employed for time series data using ordinary differencing 
are called autoregressive integrated moving average 
(ARIMA) models. An autoregressive integrated moving 
average model with order of differencing d, ARIMA (p, d, 
q) can be expressed as [14]: 

( )(1 ) ( )d
t tB B x B eφ θ− =                         (12)                      

where B represents the backshift operator. 
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B. Neural Network Model 
In recent years, neural networks (NN) for forecasting 

have been investigated by many researchers. The motivation 
for using neural networks is that these models are capable of 
handling nonlinear relationships.   

The MLP neural network model consists of different 
layers which are connected to each other by connection 
weights. Between the extremities of the input and the output 
layer are the hidden layers. The nodes in each layer are 
connected by flexible weights, which are adjusted based on 
the error or bias.  

The function of the input layer is for data entry, data 
processing takes place in the hidden layer and the output 
layer functions as the data output result. Fig. 1 shows the 
architecture of a general multilayer perceptron neural 
network. 

X1

X2

Xn

Bias

Bias

Input Layer Hidden Layer Output Layer

γji

γj0

βj

β0

Y(X)

2nd Weight Layer1st Weight Layer

Figure 1.  A General Multilayer Perceptron Neural Network 

In this architecture, the response value Y(x) is computed as 
[15]: 

0 0
1 1

( ) ( )
H n

j j ji i
j i

Y x xβ β ψ γ γ
= =

= + +∑ ∑                                 (13) 

where (β0, β1, …, βH, γ10,…, γHn) are the weights or 
parameters of the neural network. The non linearity enters 
into the function Y(x) through the so called activation 
function ψ. 

Processing in each neuron is done with summing the 
multiplication results of connection weights by the input 
data. The result will be transferred to the next neuron via 
activation function. 

In this paper, we use several kinds of activation 
functions ψ, such as sigmoid, bipolar sigmoid and 
hyperbolic tangent. 
The Hyperbolic Tangent activation function [16] given 
below: 
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C. Hybrid Model 
Linear and neural network models have achieved 

successes in their linear and nonlinear domains respectively. 
However, the use of linear models for complex nonlinear 
problems may not yield accurate results. On the other hand, 
using neural network models for linear problems has yielded 
mixed results [17]. Since it is difficult to know the 
characteristics of the data in a real problem, hybrid 
methodology that has both linear and nonlinear modeling 
capabilities can be a good strategy for obtaining accurate 
prediction. 

In general, a time series data is composed of a linear 
autocorrelation structure and a non-linear component as 
shown in Eq. (14) [17], 

t t ty L N= +                                                                     (14)          

where Lt and Nt represent the linear and nonlinear 
components respectively.   

Hybrid models using a combination of linear methods 
(such as ARIMA) and nonlinear methods (such as NN) have 
been proposed recently [17, 18]. 

D. Performance Measures 
There exist several performance measures to calculate 

the prediction efficiency. In this paper, we employ measures 
such as root mean square error(RMSE), mean absolute error 
(MAE), and mean absolute percentage error(MAPE). 

1) Root Mean Square Error (RMSE) 
The RMSE is computed as [8,19]:  

          
                                                                      (15) 

 
2) Mean Absolute Error (MAE) 

The mean absolute error (MAE) is computed as [19]: 
 
                          (16) 

                                                                   
3) Mean Absolute Percentage Error (MAPE)  

MAPE produces a measure of relative overall fit [8]: 

1

ˆ
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III. THE ADAPTIVE HYBRID FORECASTING 
The proposed adaptive hybrid algorithm is illustrated in 

Fig. 2. Depending on the result of a linearity test, either a 
linear-nonlinear combination or a nonlinear-linear 
combination will be selected as shown in Fig.2. The 
algorithm selects the best linear model after comparing the 
performance results of four linear models, namely, 
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exponential smoothing (single and double), linear regression 
(LR) and autoregressive integrated moving average 
(ARIMA) models.  
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Figure 2.  Flowchart of Adaptive hybrid for Forecasting 

We use Ramsey RESET test (regression equation 
specification error test) method for testing the linearity[20]. 
If the linearity test yields a positive result, a linear-nonlinear 
combination is selected in which, a linear model is first used 
to predict the linear component ˆ

tL . The residual or error 
series et obtained from the linear model contains 
information on the non-linearity of the series, 

ˆ  t t te y L= −                                                                      (18) 
et is then applied to a nonlinear  model using MLP with 
optimum configuration to obtain the predicted output ˆ

tN , 
which 

 
is combined with ˆ

tL  to get the overall prediction of 
the hybrid model as shown in Eq. (19),  

ˆ ˆˆt t ty L N= +  
         (19) 

where ˆty  represents the combined forecast value of the 
hybrid model at time t.   

On the other hand, if the linearity test yields a negative 
result, a nonlinear-linear combination will be used. The 
steps involved in this process are illustrated in Fig.2.  

IV. DATA 
The healthcare data such as morbidity used in this study 

are collected in Indonesia from Indonesian Health Profile, 
World Health Organization (WHO), etc [21, 22, 23].   
Morbidity is the total number of people who suffer a certain 
disease, such as Malaria, Tuberculosis. In this paper, we use 
morbidity of tuberculosis per 100,000 populations during 
the period 1990-2008 in Indonesia. 

The descriptive statistics of the MTB data such as the 
minimum, maximum, mean, standard deviation and 
Variance are shown in Table 1. 

     Table 1. . Descriptive Statistics of  MTB in Indonesia  

Name Min Max Mean Std. Dev. Variance 

MTB 244.2 442.8 336.1 64.5 4161.8 

V. EXPERIMENT STUDY 
In this section, we compute the prediction results based 

on the proposed adaptive hybrid algorithm. For linearity 
test, we applied Ramsey RESET test. For the MTB data the 
linearity test yielded a positive result and hence the linear-
nonlinear combination was selected. 
To select the best linear model and the optimum MLP 
network, the performance measures (MAE, RMSE and 
MAPE) achieved by each implemented model are discussed 
below. 

A. Exponential Smoothing 
In this paper, we use single exponential smoothing and 

double exponential smoothing. The results of performance 
measures using the models are shown in Table 2. We 
compute prediction using single exponential smoothing 
models with different weight of smoothing (α). 

Table 2. Performance Measures for Exponential Smoothing 

MODELS 
PERFORMANCE 

MEASURES 
MAE RMSE MAPE 

  0.10 54.46 61.44 18.34
  0.20 39.27 42.49 12.84

SINGLE 0.40 24.31 25.70 7.62
EXPONENTIAL  0.60 17.65 18.86 5.42
SMOOTHING 0.80 14.56 15.42 4.40

(α) 1.00 12.59 13.54 3.75
  1.20 11.22 12.58 3.31
  1.50 10.00 12.56 2.90
  1.60 10.15 13.06 2.90
  1.80 12.46 16.12 3.45
DOUBLE       

EXPONENTIAL  3.27 6.09 1.14
SMOOTHING       
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B. Linear Regression  
The equation of Linear Regression model for MTB time 

series forecasting is obtained as follows:  
450.28 11.4219*ty t= −                                                     (20) 

where yt   is the predicted value for t-th year. 
The result of the performance measures with Linear 

Regression model is shown in Table 3. 
Table 3. Performance  Measures for Linear Regression 

PERFORMANCE VALUES MEASURES 
MAE 3.16 

MAPE 1.11 
RMSE 5.38 

C. ARIMA Models 
ARIMA models assume that the data are stationary. If 

data are not stationary, they are made stationary by 
performing differencing. 

We compute autocorrelation of the MTB data to check 
whether the data are stationary. 

 
 
 
 
 
 
 
 

(a). preliminary data                               (b) After differencing one time 
Fig 3. Autocorrelation Function for MTB data 

From Fig. 3 (a), it is seen that there is a blue bar that 
goes beyond the red line, indicating that differencing 
process needs to be done.  Autocorrelation function for 
MTB data after performing differencing process one time is 
shown in Fig. 3(b) and there is no a blue bar that goes 
beyond the red line (stationary data). 

Subsequently, we compute prediction using ARIMA 
models with different parameter (p, d, q) values with d equal 
to 1. The result of the performance measures with different 
ARIMA models is shown in Table 4. Testing with other 
parameter values was also undertaken but not shown in the 
table. 

Table 4.  Performance Measures for ARIMA Models 

MODELS 
PERFORMANCE 

MEASURES 
MAE RMSE MAPE 

ARIMA(0,1,1) 2.77 4.48 0.94
ARIMA(0,1,2) 54.58 64.51 17.03
ARIMA(1,1,0) 3.03 4.86 1.04
ARIMA(1,1,2) 2.89 4.67 0.97
ARIMA(2,1,0) 2.89 4.77 0.99
ARIMA(2,1,1) 2.57 4.51 0.90
ARIMA(2,1,2) 2.55 4.43 0.90
ARIMA(2,1,3) 2.59 4.68 0.92
ARIMA(3,1,1) 2.91 4.67 1.00

D. Neural Network Model 

In this paper, we use multi-layer perceptron neural 
network model for nonlinear model. Architecture 
configurations with different values of input and hidden 
layer neurons were tested to determine the optimum 
configuration. Similarly, different activation functions such 
as hyperbolic tangent, bipolar sigmoid and sigmoid 
functions were also tested. From the experimental results, it 
is found that the neural network model with 5 input neurons, 
10 hidden layer neurons and using hyperbolic tangent 
activation functions for the hidden and output layers yields 
the minimum values for MAE, MAPE and RMSE.  

Table 5.  Performance Measures for Neural Network Models 

MODELS 
  PERFORMANCE 

Activation  MEASURES 
Function MAE RMSE MAPE 

NN(1,10,1) Hip. Tangent 2.99 3.51 1.07
NN(2,10,1) Hip. Tangent 3.21 3.90 1.18
NN(3,10,1) Hip. Tangent 2.63 3.22 0.96
NN(4,10,1) Hip. Tangent 2.94 3.52 1.05
NN(5,10,1) Hip. Tangent 2.22 2.84 0.85
NN(5,10,1) Bipolar Sigmoid 4.22 4.85 1.47
NN(5,10,1) Sigmoid 8.94 10.12 2.82
NN(6,10,1) Hip. Tangent 2.54 3.18 0.93
NN(6,10,1) Bipolar Sigmoid 3.43 3.95 1.22
NN(6,10,1) Sigmoid 6.54 7.30 2.25

The results of performance measures using different 
configurations of neural network model are shown in Table 
5.  

E. Hybrid Model 

To select the best linear model, a comparison of 
performance measures of the different linear models is 
shown Table 6. 

Table 6.  Comparison of Performance Measures for Linear Models 

NO MODELS 
PERFORMANCE MEASURES 

MAE RMSE MAPE 
1 Single Exponential Smoothing 10.00 12.56 2.90
2 Double Exponential Smoothing   3.27 6.09 1.14
3 Linear Regression 3.16 5.38 1.11
4 ARIMA(2,1,2) 2.55 4.43 0.90

From Table 6, it is seen that the best linear model is 
ARIMA(2,1,2) which is combined with the optimum neural 
network  model NN(5,10,1). The model used to construct 
hybrid model combining the optimum neural network. 

The performance measures achieved by the hybrid 
model using ARIMA(2,1,2) and NN(5,10,1) are shown in 
Table7. 
Table 7. Performance Measures for Hybrid Model 

PERFORMANCE VALUES MEASURES 
MAE 0.34 

MAPE 0.11 
RMSE 0.18 
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F. Comparison of Models   
Table 8 shows a comparison of MAE, MAPE and RMSE 

values obtained using the best linear model (ARIMA(2,1,2), 
Optimum Neural Network (NN(5,10,1)) and Hybrid models. 
For the sake of illustration, the results obtained by using the 
hybrid model with a nonlinear-linear combination are also 
shown in Table 8. In this case the NN(5,10,1) is applied first 
which is followed by ARIMA(2,1,2). 
Table 8. Comparison of Performance Measures for Prediction Models 

NO MODELS 
PERFORMANCE 

MEASURES 
MAE RMSE MAPE

1 The Best Linear Model 2.55 4.43 0.90
2 The Optimum Neural Network  2.22 2.84 0.85
3 Hybrid (ARIMA (2,1,2) + NN(5,10,1)) 0.34 0.18 0.11
4 Hybrid (NN(5,10,1) + ARIMA (2,1,2)) 2.22 6.78 0.80

We note from Table 8 that the hybrid model combining 
ARIMA (2,1,2) and NN(5,10,1) gives the best results 
compared to all other models.  

VI. CONCLUSION 
This paper has discussed the use of an adaptive hybrid 

algorithm combining linear and neural network models for 
the prediction of time series data pertaining to morbidity of 
tuberculosis. This algorithm will test the linearity of the 
time series data to determine which hybrid combination, 
namely, linear-nonlinear or nonlinear-linear should be used 
for prediction. From the experimental results, it has been 
found that the hybrid model comprising linear - nonlinear 
combination performs better than other models for the 
prediction of MTB data.  
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