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Abstract—Image de-noising is an important part of image 
enhancement. This paper proposes an image de-noising 
technique on the singular value decomposition (SVD) using a 
combination of the signal-to-noise ratio (SNR) and median of 
noised image as a filtering function for singular values 
replacement. The signal noise is assumed to be an additive white 
Gaussian noise. Experimental results show that the proposed 
method is able to successfully enhance the visual quality of noisy 
images through this low complexity de-noising process. 

Keywords-component; image de-noising; singular value 
decomposition; signal-to-noise ratio; median; image enhancement 

I.  INTRODUCTION 
The term ‘noisy image’ refers to image degradation caused 

by noise perturbation. Image de-noising is the process of 
reducing or removing the influence of noise from the noisy 
image and reproducing, as close as possible, the original 
‘clean’ image.  

Singular value decomposition (SVD) is a technique that has 
been widely applied in image de-noising. Yanmin et al. [1] 
proposed an adaptive de-noising by SVD using image patches. 
Their experiment achieved outstanding preservation of image 
details, and provided improvement on de-noised images at high 
noise levels. Sunil and Yadava [2] proposed noise removal by 
truncating the SVD matrices up to a few largest singular value 
components, and reconstructing the de-noised image by using 
the remaining singular vectors. Their procedure could 
effectively remove an additive noise from the sensor array 
based electronic nose data. Tanaphol et al. [3] proposed an 
adaptive image de-noising based on the non-local mean by 
employing the SVD and K-means clustering technique for 
robust block classification in noisy images, adjusting the local 
window adaptively to match the local property of a block, and 
applying a rotated block matching algorithm for better 
similarity matching. Their proposed technique is shown to be 
effective in de-noising highly noisy images. Zhijia et al. [4] 
proposed the minimum energy model for image de-noising by 
selecting the proper singular values that represent the signal, 
and discarding the ones that represent noise. Their experiment 
results show that their technique is effective and robust to the 
images with simple/regular pattern/structure. Wongsawat et al. 
[5] proposed the multichannel SVD-based image de-noising by 
employing the integer discrete cosine transform (IntDCT) to 

de-correlate the image into sixteen sub-bands and applying the 
SVD to each of the subbands. Their proposed technique could 
effectively filter the noisy images without assuming any 
statistics of the image.   

In this work, we propose an alternative method to reduce 
the noise by using the SNR and median values of noised image 
as a filtering function based on SVD. In SVD, singular values 
have a dominant effect on the image quality [4]. By modifying 
those values using this filtering, the proposed method could be 
expected to be as close as possible to the original clean image. 

This paper is organized as follows. Section II illustrates the 
SVD in brief as a background of this work. Section III presents 
the proposed image de-noising method, while the experimental 
results are described in Section IV. Finally, the conclusion is 
presented in Section V. 

II. BACKGROUND 

A. Singular Value Decomposition  
The SVD is a numerical approach to obtain a linear 

algebraic solution by matrix factorization. A matrix can be 
decomposed into three matrices of the same size as the original 
matrix, which in turn, can be reconstructed into the original 
matrix.  

Let, M be the N×N real matrix with rank r ≤ N. The SVD 
of M is defined as [4, 5, 8]: 

 TM USV  

where S is an N×N diagonal matrix with singular values s1≥s2

≥…≥sN≥0; U and V are N×N orthogonal matrices and 
called as the left and right singular vectors, respectively; and VT 
is the conjugate transpose of V. Equation (1) can also be 
expressed in summation form of components matrices: ui, si, 
and vi

T [2]. 
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where si = s1≥s2≥…≥sN > 0 are singular values of M; ui = [u1i  
u2i  …  uNi] and vi = [v1i  v2i  …  vNi] are the left and right 
singular vectors with i= 1, 2, …, N, respectively.   

B. SVD on Image Processing 
In digital image processing, an image N×N can be 

represented as a matrix of size N×N. Fig. 1 illustrates the SVD 
application to decompose and reconstruct a gray level image of 
Lena. The Lena image I is decomposed into U, S, and V using 
the SVD transform. The three matrices: U, S, and V have the 
same size with I. The reconstructed image of I can be obtained 
by multiplying U, S, and VT.  

 

Figure 1.  Image Decomposition and Reconstruction 

The diagonal matrix S consists of the singular values si and 
it represents the energy of an image I [4]. It means that the 
image information is addressed by those singular values of S. 
The U and V control the spatial distribution of image energy, 
formulated by multiplying U and VT as a component image. 
This concept is illustrated in Fig. 2. 

 

Figure 2.  Image Spatial Distribution of Lena512×512 (a) Original Image,  (b) 
UVT Image 

There are many SVD applications in image processing, 
such as image compression, registration, recognition, 
enhancement, and segmentation. The SVD transformation has 
some important advantages in image processing. First, the 
singular values of an image are stable without any great 
variance when the image has a small disturbance. Second, 
singular values contain algebraic image properties which are 
intrinsic and not visual [7]. 

III. THE PROPOSED IMAGE DE-NOISING METHOD 
Suppose the original image I is distorted by a noise 

component X. The noisy image I’ can be formulated as: 

 'I I X   

where the noise variable X is a random noise and is assumed to 
be independent and identically distributed (i.i.d.) Gaussian 
distribution with zero mean and standard deviation σ. The main 
task of the image de-noising is to estimate the noiseless image, 
namely, Id, from the noisy image I’.  

In this work, the estimated image Id will be achieved by 
modifying the singular values of Id. Let Λ be a diagonal matrix 
which consists of the singular values si, and r be a rank of Λ. 
Noise reduction is performed by replacing the singular values si 
in Λ using the filtering function in (4). The change of singular 
values is obtained based on their certain position which is 
determined by the percentile values (Pk). The singular values 
are divided into four ranges with the limit of position values are 
P5, P50, and P75. The most image information of an image is 
represented on the foreside of the singular matrix and its 
represent by P5 to P50 of the first-half singular values. The next 
half range of singular values then separated proportionally. 
This separation is intended to prevent a significant loss of 
image information, especially on the first-half singular values. 
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where α is the de-noising coefficient, medΛ is the median of Λ, 
Pk is the k-percent position (percentile) of the si, and i = 1, 2,…, 
r. The SNRΛ is a ratio of the mean and standard deviation of Λ, 
notated as [4,7]: 

 /SNR      

where μΛ and σΛ are the mean and standard deviation of Λ, 
respectively. 

To evaluate the proposed method performance, the mean 
square error (MSE) and peak signal to noise ratio (PSNR) are 
used in this work as performance measures. The MSE and 
PSNR are computed by (6) and (7), respectively. 
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where I and I’ are the original and noiseless image, 
respectively; MaxI is the maximum possible pixel value of the 
image I; and m and n are the number of rows and columns of 
the image I, respectively. 

IV. EXPERIMENTAL RESULTS 
The noise model in this experiment is assumed to be 

additive Gaussian with zero mean and standard deviation σ. For 
the first experiment, we used standard deviation σ=10 to 
generate a random noise and α=0.25 as a de-noising 
coefficient. The noisy and de-noised images of Lena512×512 are 
illustrated in Fig. 3a and Fig. 3b. Using those parameter values, 
the MSE is decreased by 87.5803, while the PSNR is increased 
by 9.0666dB. It means that the proposed method could 
improve the image visual quality by reducing the noise. 

 

Figure 3.  Noisy and De-noised Image of Lena512×512. (a) Noisy Image (σ=10, 
PSNR=28.1319dB, MSE=99.9748), (b) De-noised Image (α=0.25, 

PSNR=37.1985dB, MSE=12.3945 

 
Fig. 4. Plot Histogram of Lena512×512 

 
To evaluate the estimation model, Fig. 4 illustrates the 

histogram of the Lena image for standard deviation σ=10. The 
change on the singular values of the noisy image reduces the 
noise when the plot gets closer to that of the original image. 
Although the de-noised image is not a perfect estimation of the 

clean image, the pixel distribution of the de-noised image is 
significantly similar to the original image. The residual image 
which represents the differences between the original image 
and de-noised image is illustrated in Fig. 5.   

The proposed method was then applied on test images with 
higher standard deviation of noise. The standard test images, 
such as Lena, Pepper and Goldhill were used in the 
performance evaluation. The noisy, de-noised, and histogram 
images of Pepper and Goldhill are illustrated in Fig. 6. The 
MSE and PSNR performances are presented in Table I. The 
standard deviations in this experiment are 10, 15, 20, and 25; 
with the fixed de-noised coefficient is 0.25. Experimental 
results show that using the higher standard deviation, the MSE 
increased and the PSNR decreased.  

 

 
Fig. 5. Residual Image of Lena512×512 

 

 
 

The performance of the proposed method is also evaluated 
for different values of the de-noising coefficient α. Table II 
shows that the change of the de-noising coefficient caused the 
small effect on the visual quality of performance both in MSE 
and PSNR. Similar results were observed. 

 

 

TABLE I. MSE AND PSNR PERFORMANCES IN DIFFERENT IMAGES 
(α=0.25) 

Images σ MSE PSNR (dB) 
Noisy De-noised Noisy De-noised 

Lena 10 99.9748 12.3945 28.1319 37.1985 
 15 224.487 20.4109 24.6189 35.0322 
 20 400.673 31.8340 22.1029 33.1019 
 25 622.774 47.0392 20.1875 31.4062 

Pepper 10 99.5635 11.3899 28.1498 37.5656 
 15 225.004 19.2252 24.6089 35.2921 
 20 400.553 30.2503 22.1042 33.3235 
 25 626.672 45.0174 20.1604 31.5970 

Goldhill 10 99.5635 22.0653 28.1498 34.6937 
 15 224.864 30.6521 24.6116 33.2662 
 20 400.766 42.4503 22.1019 31.8520 
 25 622.286 57.3285 20.1909 30.5471 
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In evaluation of the proposed method with the other 

benchmark methods, the results presented in Table III show 
that the proposed method performed better in almost all cases.  

 

V. CONCLUSION 
This paper proposed an image de-noising technique using 

singular value decomposition (SVD) by median and SNR as a 
filtering function. To obtain the clean signal, the filtering was 
applied to change the singular values. In this method, the low 
singular values were kept to prevent drastic changes to those 
values. Experimental work demonstrates that the proposed 
method has better performance in reducing most noise 
compared to the other methods. As a further work, the 
proposed method will be applied on the block-image.  
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Fig. 6. (a)-(d) Original, Noisy, De-Noised, Histogram Image of Pepper512×512;(e)-(h) Original, Noisy, De-Noised, Histogram Image of GoldHill512×512 

TABLE III.  PSNR PERFORMANCES COMPARISON 

Images σ MSVD 
 [5] 

ANL 
 [3] 

ASVD 
[1] 

Proposed 
α=1 

Lena 10 32.12 34.11 35.60 37.06 
 20 28.56 31.98 32.97 33.64 
 25 27.45 30.56 32.05 32.19 
 30 26.67 30.04 31.13 30.88 
 40 25.79 28.27 29.82 28.73 
 50 24.38 27.29 28.94 26.79 

Pepper 10 31.68 34.65 36.19 37.57 
 20 28.48 31.59 32.84 33.98 
 25 27.75 30.21 31.43 32.49 
 30 26.12 29.79 30.98 31.16 
 40 25.04 28.00 29.13 28.80 
 50 24.19 27.12 28.43 26.95 

Goldhill 10 30.83 31.67 32.84 34.69 
 20 27.69 30.15 30.42 32.40 
 25 27.04 29.12 29.60 31.28 
 30 26.11 28.28 28.81 30.21 
 40 25.53 27.98 28.42 28.26 
 50 24.77 26.56 27.13 26.52 

 

TABLE II. MSE AND PSNR PERFORMANCES OF LENA IMAGE IN 
DIFFERENT DE-NOISING COEFFICIENT (σ =10) 

α σ MSE PSNR (dB) 
  Noisy De-noised Noisy De-noised 

0.00 10 99.6392 12.7462 28.1465 37.0770 
0.25 10 99.6966 12.4724 28.1440 37.1713 
0.50 10 99.9425 12.3982 28.1333 37.1972 
0.75 10 99.7127 12.5061 28.1433 37.1596 
1.00 10 100.1637 12.7450 28.1237 37.0774 
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