
Soft Computing (2019) 23:13679–13690
https://doi.org/10.1007/s00500-019-03907-6

METHODOLOGIES AND APPL ICAT ION

Unsupervised software defect prediction using signed Laplacian-based
spectral classifier

Aris Marjuni1,2 · Teguh Bharata Adji1 · Ridi Ferdiana1

Published online: 20 March 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
The lack of training dataset availability is the most popular issue in the software defect prediction, especially when dealing
with new project development. Adopting training dataset from other software projects probably will not be the best solution
because of the software metrics heterogeneity issues across projects. Unsupervised approaches have been proposed to address
this issue, where the software prediction model is built without training dataset. Spectral classifier is one of these unsupervised
approaches that has been applied successfully to address the lack of training dataset. However, this method leaves an issue
when the dataset does not meet the requirement of nonnegative Laplacian assumption. This case would be occurred if there
were nonnegative values of the adjacency matrix. It is well known that spectral classifier works with the Laplacian matrix,
where the Laplacian matrix is constructed by adjacency matrix. In this paper, the signed Laplacian-based spectral classifier
is proposed to solve the negative values problem in the adjacency matrix by converting the negative values into absolute
values. The experimental results show that the proposed method could improve the performance of unsupervised classifiers
compared to the unsigned Laplacian-based spectral classifier method. Hence, the proposed method is strongly suggested as
unsupervised software defects prediction for the software projects that have no historical software dataset.

Keywords Unsupervised software defect prediction · Spectral clustering · Absolute adjacency matrix · Signed Laplacian ·
Unsigned Laplacian

1 Introduction

Software testing is one of the most important phases in the
software development project. In the testing phase, engi-
neers need in-depth test and review on each module to find
a potential defects and fix them before released to end users.
However, finding defects by tracking a coding path in each
module is generally less efficient, as the amount of coding

Communicated by V. Loia.

B Teguh Bharata Adji
adji@ugm.ac.id

Aris Marjuni
aris.marjuni@mail.ugm.ac.id; aris.marjuni@dsn.dinus.ac.id

Ridi Ferdiana
ridi@ugm.ac.id

1 Department of Electrical and Information Engineering,
Faculty of Engineering, Universitas Gadjah Mada,
Yogyakarta 55281, Indonesia

2 Faculty of Computer Science, Dian Nuswantoro University,
Semarang 50131, Indonesia

paths in large module or software usually has distributed
exponentially (Zhang and Zhang 2007). Developers might
be spending more time and resources, and it causes the soft-
ware testing cost become expensive (Wahono 2015). Another
alternative for finding the software defect could be performed
byapplying software defect prediction (SDP)model (He et al.
2012; Arar and Ayan 2015; Lee et al. 2016).

Implementation of the SDP model provides effectiveness
to detect software defects rather than using manual soft-
ware review, where SDP model can detect 71% of software
defectswhilemanual software reviewonly detects about 60%
of software defects (Menzies et al. 2010). The contribution
of the SDP model will help the developer’s team to opti-
mize resources during the software testing phase regarding to
achieve software quality. Thus, research in SDP has become
an active topic in software engineering to get a better perfor-
mance of SDP models.

Software defect prediction works with past software met-
rics dataset for model training (Punitha and Chitra 2013;
Petersen 2011). Most of the SDP models are built by super-
vised approachwhere themodel is trained by labeled datasets

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-019-03907-6&domain=pdf
http://orcid.org/0000-0001-7856-1498

13680 A. Marjuni et al.

Fig. 1 Within-project and cross-project defect prediction scenario (Nam et al. 2017)

to predict defect prone for targeted project (Nam and Kim
2015). Based on source of training datasets, the supervised
approach can be divided into two models that are within-
project defect prediction and cross-project defect prediction.
Within-project defect prediction is SDP model where train-
ing dataset and testing dataset are from the same projects,
while cross-project defect prediction is SDP model where
training dataset comes from different projects (Zhang et al.
2014).

In within project, the defect prediction model is trained
by labeled dataset to predict the unlabeled target dataset, as
illustrated in Fig. 1a. For example, suppose a new version of
software A is currently being developed. Also suppose that
there is a past software metrics dataset with defective and
clean class values of previous versions. The SDP model for
the new version of software A could be built using the past
software metrics of old version of A. After the model has
been trained, then it will be used to predict new class for
unlabeled software metrics of A.

In recent years, within-project defect prediction is the
most widely proposed model in software defect prediction
research because it produces an excellent performance as
compared to other models. This is not surprising as this
model is built using the same distribution in training and
testing datasets. However, it is impossible to build within-
project defect prediction models for new software projects
since there is a difficulty to provide prior dataset for training
(Nam et al. 2017; Zhang et al. 2016). To address this issue,
the defect predictionmodel could be built using cross-project
defect prediction approach, as illustrated in Fig. 1b.

In cross-project defect prediction model, training datasets
are adopted from other existing projects. For example, sup-
pose a new software project, namely project B, is currently
being developed. Since there is no historical software met-
rics dataset of project B, the existing similar software from
another project, namely project A, can be used in the SDP
model to predict defect prone for project B. The historical
data of project A will be used as training dataset with in-

depth attributes selection to get a similar dataset distribution
between project A and project B.

This cross-project defect prediction approach is very
promising to address unavailability dataset issues in the
within-project defect prediction model. However, there are
many limitations to build cross-project defect prediction
model in practice. First, it is very difficult to find simi-
lar software from another project for training dataset which
has the same metric distribution with target project. Second,
although there might a similar project, the intersection met-
rics between source and target datasets must be adjusted to
get similar dataset distribution. It means the different metrics
might be removed from the datasets.

Removing some metrics without prior evaluation is not
a good decision as it may decrease the performance of
cross-project defect prediction model when the omitted
metrics are actually influencing the model. Hence, hetero-
geneous between source and target datasets has become
a challenge issue in cross-project defect prediction model
development (Ni et al. 2017; Ryu et al. 2015). To address het-
erogeneous dataset issue in cross-project defect prediction,
some researchers proposed unsupervised approach where
the defect prediction model was built using intrinsic target
dataset directly without training dataset. In this paper, the
unsupervised classifier based on the spectral clusteringmodel
proposedbyZhang et al. (2016) is referred as a baseline study.

In spectral clustering, software entities are viewed as a col-
lection of interconnected entitieswhere connectivity between
software entities is determined by a similarity function calcu-
lated from the software metric values. Software entities that
have high degree of similarity are grouped on the same clus-
ter using spectral clustering to get non-overlapped defective
and clean clusters. Finally, the average row sums of the nor-
malized metrics of each cluster are applied for labeling on
each software entity. The cluster with larger average row sum
is considered as the cluster containing defective entities, and
all entities within this cluster are labeled as defective. Their
proposedmethod achieved amedian AUC value of 0.71, and

123

Unsupervised software defect prediction using signed Laplacian-based spectral classifier 13681

Fig. 2 Unsupervised defect prediction scenario (Zhang et al. 2016)

it outperforms common classifiers such as Random Forest,
Naïve Bayes, and Logistic Model Tree with median AUC
values of 0.70, 0.68, and 0.68, respectively. Their model has
a good achievement to address heterogeneity between source
and target datasets.

However, there is an opportunity to improve the spectral
clustering application performance. The use of a similarity
function in the baseline method has not considered the nega-
tive values of the adjacency matrix, since the negative values
are converted into zero to meet the nonnegative Laplacian
matrix assumption. It means that connectivity between enti-
ties with negative similarity is considered as no connection,
while it actually has a connection with opposite sign.

In software defect dataset, the original dataset itself actu-
ally has no negative values since almost software metric has
rarely negative values. Negative values usually come from
data preprocessing, such as z-score transformation to make
the data as close as normal distribution and also to handle out-
lier data by scaling transformation. In order to use spectral
clustering, there is a nonnegative assumption for Laplacian
matrix (Zaki and Wagner 2014; Aggarwal and Reddy 2014)
which is built by an adjacency matrix. Hence, if adjacency
matrix contains negative values, then it does not meet non-
negative assumption.

In this paper, an absolute transformation for handling
negative values in adjacency matrix is proposed for the
unsupervised spectral classifier. This paper is organized as
follows. Section 2 presents the related works of unsuper-
vised software defect prediction based on spectral clustering.
Section 3 explains the detail of our proposed methods for
handling negative values in adjacency matrix in order to
perform unsupervised software defect prediction based on
spectral clustering. Section 4 describes the experimental
setup, including the datasets, experiment design, and perfor-
mance evaluation. Section 5 presents the experimental results
and discussion. Finally, the conclusion and future works are
summarized in Sect. 6.

2 Related works

Unsupervised software defect prediction generally works
with unlabeled dataset. In the software defect prediction
scheme, there are two main processes for obtaining the class

labels of software entities in the dataset. First, clustering pro-
cess is applied to group the software entities into clusters
which have similar metrics using distance or similarity mea-
sures. Second, labeling process is performed on each cluster
to obtain defective or clean cluster labels for all software enti-
ties. This scheme of unsupervised software defect prediction
is illustrated in Fig. 2.

Unsupervised software defect predictionwas initially pro-
posed by Zhong et al. (2004) where k-means and natural gas
clustering algorithms are applied to cluster softwaremodules.
The natural gas algorithm outperforms k-means algorithm.
However, it needs an expert to manually label each cluster
whether defective or non-defective. Hence, the defect predic-
tion will be dependent on the capability of the human expert.

Catal et al. (2009) proposed the x-means to cluster the
software entities. The software entity is predicted as defective
if one of its metric’s value is higher than the corresponding
threshold metric value. The threshold metrics that have been
used in this approach included the lines of code, cyclomatic
complexity, unique operator, unique operand, total operand,
and total operator.

Bishnu and Bhattacherjee (2012) proposed the quad trees
algorithm for clustering and classification that outperforms
Naïve Bayes and Linear Discriminant Analysis. Abaei et al.
(2013) proposed the utilized self-organizing map (SOM) for
clustering. The SOM method is applied to cluster software
entities. The cluster label is obtained by comparing all metric
valueswith the thresholdmetric values,whichhavebeenused
by Catal et al. (2009) previously.

Nam and Kim (2015) proposed the median of metric val-
ues for clustering. The median of all entities are computed,
and then the number of metrics that have higher values than
the median is identified. All entities with the same number
of identified higher values are placed in the same cluster. For
labeling, all clusters are then partitioned into two groups,
the top half of clusters are then labeled as defective, and the
bottom half are labeled as clean.

One of the most recent unsupervised software defect
prediction is proposed by Zhang et al. (2016) using spectral-
based classifier (e.g., Algorithm 1), which is adopted from
the spectral graph clustering.The software entities are viewed
as the set of nodes and the connectivity between entities are
viewed as an edges. Spectral clustering is applied to group the
software entities into defective and clean clusters using the
eigenvectors characteristic. The cluster labels are then per-
formed by computing the average row sum of each clusters.
A cluster with larger average row sum than another cluster
is labeled as a defective cluster, and all entities in that clus-
ter are predicted as defective. The complete steps for this
unsupervised spectral classifier are explained as follows.

123

13682 A. Marjuni et al.

1. Normalize software metrics using z-score in Eq. 1.

ŷ j = y j − ȳ j
s j

(1)

where is normalized value of the j th metric, y j =
{a1 j , a2 j , . . . , an j }T is a vector value of the j th metric,
ai j is the value of the j thmetric on the i th software entity,
n is the number of entities in the project, ȳ j is the average
value of y j , and s j is the standard deviation of y j .

2. Construct an adjacency matrix W from all the similarity
between each pair of software entities,which is computed
by normalized values of softwaremetrics. Suppose xi and
x j are matrices of the metric values of software entities
i and j , respectively. The similarity between two entities
xi and x j is defined as dot product between two matrices
xi and x j (Aggarwal and Reddy 2014), as shown in Eq. 2.

W = (wi j) = xi · x j =
m∑

k=1

aik .akj (2)

where aik is the kth metric value on the i th software
entity, andm is the total number ofmetrics. The similarity
wi j between the i th and j th entities could be positive,
negative, or zero (Zaki and Wagner 2014; Aggarwal and
Reddy 2014).

3. Calculate the symmetric normalized Laplacian matrix
Lsym (Aggarwal and Reddy 2014), as follows.

Lsym = I − D−1/2WD−1/2 (3)

where I is the unity matrix with size of n, W is the
adjacency matrix obtained from Eq. 2, and D−1/2 is the
degree of normalized diagonalmatrix computed byEq. 4.

D−1/2 = diag{d−1/2
1 , d−1/2

2 , . . . , d−1/2
n } (4)

Algorithm 1 Spectral-based unsupervised software defect
clustering (Zhang et al. 2016).
Require: A matrix with rows as software entities and columns as met-
rics.

Ensure: A vector of defect proneness of all software entities.

1. Normalize software metric using z-score transformation.
2. Construct an adjacency matrix W .
3. Calculate the normalized signed Laplacian matrix Lsym .
4. Perform the Eigen decomposition on Lsym matrix.
5. Select the second smallest eigenvalue v1 and select the eigenvec-

tor v1i corresponds to the v1.
6. Perform the bipartition on v1i using zero threshold.
7. Label each cluster as defective or clean.

where d−1/2 is the degree of i th entity obtained by Eq. 5.

d−1/2 =
⎧
⎨

⎩

n∑

j=1

wi j

⎫
⎬

⎭

−1/2

(5)

where wi j is the similarity between the i th and j th enti-
ties. In spectral clustering, the symmetric normalized
Laplacian matrix is assumed as nonnegative, where all
of similarity values must be positive semidefinite or wi j

≥ 0. In baseline method, the negative similarities are
converted into zero to meet the nonnegative Laplacian
assumption (Zhang et al. 2016).

4. Perform the Eigen decomposition on Lsym to get eigen-
values and eigenvectors of Lsym, and select the second
smallest eigenvalues for clustering. The selected eigen-
value is denoted as v1.

5. Perform the bipartition on v1 using zero threshold. Sup-
pose v1i is the eigenvector values related to the eigenvalue
of the i th software entity. All software entities with v1i >

0 are suspected as defective and separated to the defective
cluster (denoted asCpos). Conversely, all of the remaining
entities are separated to the clean cluster (Cneg) (Zhang
et al. 2016).

6. Label each cluster as defective or clean by computing
the average row sum of all entities on each cluster. A
cluster with larger average row sum than another cluster
is predicted as defective, and all entitieswithin this cluster
are labeled as defective, and conversely (Zhang et al.
2016).

3 Proposedmethod

Based on the related works, the unsigned Laplacian-based
spectral classifier would be used as the baseline for the pro-
posed method to improve its performance. The unsigned
Laplacian is constructed by the adjacency matrix as shown
in Eq. 3. The adjacency matrix consists of the similarity
between each pair of software entities, as shown in Eq. 2.
The elements of adjacency matrix could be either positive,
zero, or negative values. If the adjacency matrix W contains
negative values, then the D−1/2 matrix in Eq. 4 does not
exist and the matrix Laplacian L would no longer be positive
semidefinite (Knyazev 2017). To address that issue, the abso-
lute transformation can be applied for all adjacency matrix
elements to get nonnegative values. In term of graph the-
ory, the graph with no negative values in adjacency matrix is
called unsigned graph, as shown in Fig. 3a, while the graph
with both negative and positive values in adjacency matrix
is called signed graph, as shown in Fig. 3b (Knyazev 2017;
Kunegis et al. 2010; Gallier 2016).

123

Unsupervised software defect prediction using signed Laplacian-based spectral classifier 13683

Fig. 3 Unsigned graph and signed graph diagram (Kunegis et al. 2010)

The negative values of adjacency matrix can be repre-
sented as the edge of two opposing nodes (Kunegis et al.
2010). If wi j ∈ W is a negative value of the edge between
node vi and v j (i.e.,wi j < 0), then the node vi takes value of
−vi adjacent to v j with |wi j | as the new edge value. Suppose
G = (V ,W) is a signed graph, where V is a set of vertices
vi(i=1,2,3,...,n), W is a symmetric matrix with zero diagonal
of nxn in size, and wi j ∈ W is an edge value between vi and
v j with vi , v j ∈ V . The signed degree of ith entity (Gallier
2016) in Eq. 5 becomes:

d̄i
−1/2 = d̄(vi)

−1/2 =
n∑

j=1

|wi j |
−1/2

(6)

and the signed degree of normalized matrix D in Eq. 4
becomes:

D̄−1/2 = diag{d̄−1/2
1 , d̄−1/2

2 , . . . , d̄−1/2
n } (7)

Hence, the normalized of signed Laplacian matrix could be
defined as:

L̄sym = D̄−1/2L D̄−1/2 = I − D̄−1/2W D̄−1/2 (8)

To prove that L̄sym is positive semidefinite can be evaluated
by the quadratic form xT L̄x using Definition 1 and Proposi-
tion 1, as explained in Gallier (2016).

Definition 1 For any real number λ ∈ � where � is a real
number set, the sign of λ is defined as:

sgn(λ) =
⎧
⎨

⎩

+1 if λ > 0
0 if λ = 0
−1 if λ < 0

(9)

Proposition 1 For any nxn symmetric matrix W = (wi j), if
L̄ = D̄−W where D̄ is the signed degree matrix associated
with W, then:

xT L̄x = 1

2

m∑

i, j=1

|wi j |(xi − sgn(wi j)xi j)
2 (10)

Algorithm 2 Modified spectral classifier based software
defect clustering.
Require: A matrix with rows as software entities and columns as met-
rics

Ensure: A vector of defect proneness of all software entities.

1. Normalize software metric using z-score transformation.
2. Construct an adjacency matrix W .
3. Perform absolute transformation of W (e.g., |W |).
4. Calculate the normalized signed Laplacian matrix L̄sym .
5. Perform the Eigen decomposition on L̄sym matrix.
6. Select the second smallest eigenvalue v1 and select the eigenvec-

tor v1i corresponds to the v1.
7. Perform the bipartition on v1i using zero threshold.
8. Label each cluster as defective or clean.

for all x ∈ � where � is a real number set. Consequently,
L̄ is positive semidefinite.

Proof

xT L̄x = xT(D̄ − W)x

= xT D̄ − xTWx

=
m∑

i=1

d̄i x
2
i −

m∑

i, j=1

wi j xi x j

=
m∑

i, j=1

(|wi j |x2i − wi j xi x j)

=
m∑

i, j=1

(|wi j |(x2i − sgn(wi j)xi x j))

= 1

2

⎛

⎝
m∑

i, j=1

(|wi j |(x2i − sgn(wi j)xi x j + x2i))

⎞

⎠

= 1

2

⎛

⎝
m∑

i, j=1

(|wi j |(xi − sgn(wi j)x j)
2)

⎞

⎠

(11)

The right-hand side of Eq. 11 is positive semidefinite; hence,
L̄ is also positive semidefinite. Thus, substituting x to D̄−1/2

on the left-hand side of Eq. 11 will result in:

xT L̄x = (D̄−1/2x)T L̄(D̄−1/2x)

= xT D̄−1/2 L̄ D̄−1/2x

= xT L̄symx

(12)

Thus, the xT L̄x from Eqs. 11 and 12 can be written as:

xT L̄x = 1

2

m∑

i, j=1

|wi j |(xi − sgn(wi j)xi j)
2 (13)

Hence, L̄sym is positive semidefinite. ��

123

13684 A. Marjuni et al.

Table 1 Overview of NASA MDP datasets

Project Description Number of entities Defective

Number Percentage

CM1 Spacecraft instrument 327 42 12.8

KC3 Storage management for ground data 194 36 18.6

MC1 Zero gravity experiment related to combustion 1988 46 2.3

MC2 Video guidance system 125 44 35.2

MW1 Zero gravity experiment related to combustion 253 27 10.7

PC1 Flight software from an earth orbiting satellite 705 61 8.7

PC2 Dynamic simulator for attitude control systems 745 16 2.1

PC3 Flight software for earth orbiting satellite 1077 134 12.4

PC4 Flight software for earth orbiting satellite 1287 177 13.8

PC5 Flight software for earth orbiting satellite 1711 471 27.5

Finally, the implementation of an absolute adjacency
matrix on unsupervised based spectral classifiers is summa-
rized in Algorithm 2, as the modified of spectral classifier in
Algorithm 1.

4 Experimental setup

In order to ensure that the performance evaluation process
of the proposed method works in a structured manner, the
experimental setup in this experiment is prepared as follows.

4.1 Dataset

In this experiment, the public dataset of NASA MDP (Men-
zies et al. 2016) is used to evaluate the proposed method
performance. The 10 datasets are used in this study, that are
CM1, KC3, MC1, MC2, MW1, PC1, PC2, PC3, PC4, and
PC5 software project datasets. The NASAMDP dataset was
written in C/C++ language for spacecraft instrumentation,
satellite flight control, scientific data processing, and stor-
age management of ground data (Tomar and Agarwal 2016).
The overview of these datasets is described in Table 1, and it
is available in the PROMISE data defect repository (Zhang
et al. 2016;Menzies et al. 2016). The public dataset is chosen
due to extensively used in software defect prediction studies.

The purpose of this study is to address the challenge
of unavailability of training dataset in cross-project soft-
ware prediction through unsupervised approach. Hence, all
of datasets in this experiment are used once as testing datasets
to validate the proposed model (Zhang et al. 2016).

4.2 Experiment design

To evaluate the performance of the proposed method, the
experimental design in this experiment is conducted into
three steps as follows.

The first step is data preprocessing, including the data
cleaning and the data normalization. The data cleaning is
performed to remove the duplication records and the miss-
ing values of metrics. The z-score transformation in Eq. 1
is then applied to improve the data normalization. This data
normalization corresponds to the step 1 in Algorithm 2.

The second step is data clustering using the signed
Laplacian-based spectral clustering. This step corresponds
to the step 2 until step 7 in Algorithm 2. The motivation of
this proposed method is to address the negative values issue
of Laplacian matrix in the spectral clustering. For evalua-
tion, the clustering performance is measured by the Davies
Bouldin Index as shown in Eq. 15. The performance of
the signed Laplacian-based spectral clustering will be com-
pared to the unsigned Laplacian-based spectral clustering,
with the null hypothesis H01: there is no difference in the
performance between the signed Laplacian and unsigned
Laplacian-based spectral clustering.

The two-tailedWilcoxon signed-rank test is used to evalu-
ate the H01 hypothesis with 95%confidence (i.e., p < 0.05).
The null hypotheses H01 would be rejected if there is a
statistical value of p less than 0.05, and the both of clus-
tering performance are significantly different. The two-tailed
Wilcoxon signed-rank test is chosen to test the clustering per-
formance because it is nonparametric and does not require
any assumptions on the data distribution.

The third step is labeling or classifying process to obtain
defective or clean label for all entities, corresponds to the
step 8 in Algorithm 2. This experiment applied unsuper-
vised approach based on spectral classifier, so it does not
need training dataset. All of the datasets are used once to
test the proposed model as testing datasets. This approach is
addressed to solve unavailability training datasets issues in
cross-project software defect prediction. In case for labeling,
the new label is generated directly from clustering results in
the second step. The output of clustering process only has

123

Unsupervised software defect prediction using signed Laplacian-based spectral classifier 13685

two clusters that are defective and clean clusters, and it will
be used as reference for labeling.

The performance of classifier is measured by recall,
precision, accuracy, and AUC , which are explained in
Sect. 4.3.All of the proposedmethodperformancevalueswill
be compared to the baseline method, with the null hypothe-
sis H02: there is no difference in the performance between
the signed and unsigned Laplacian-based spectral classifier.
The null hypothesis H02 would be tested using the two-
tailed Wilcoxon signed-rank test with 95% confidence (i.e.,
p < 0.05). For decision, the null hypotheses H02 would be
rejected if there is a statistical value of p less than 0.05 and
the performance of both classifiers is significantly different.

4.3 Performance evaluation

In this experiment, the clustering performance evaluation is
measured using the Davies Bouldin Index. It measures the
cluster compactness by comparing the distance between the
cluster means. The smaller values of the Davies Bouldin
Index indicate better performance of clustering, where the
clusters are well partitioned (Zaki and Wagner 2014).

Suppose μi and μ j are the mean of cluster Ci and C j ,
respectively, and are the total variance of cluster Ci and C j ,
respectively, and is the distance between cluster mean of μi

and μ j , then the Davies Bouldin (DB) measure for a pair of
cluster Ci and C j is defined as follows.

DBi j = σμi + σμ j

δ(μi , μ j)
(14)

and the Davies Bouldin Index (DBI) is defined as:

DBI = 1

k

k∑

i=1

max
j �=i

DBi j (15)

where k is number of clusters.
For prediction evaluation, the predictive performance is

measured using the analysis data of confusion matrix (Hall
et al. 2012), as described in Table 2. A confusion matrix
(Bishnu and Bhattacherjee 2012) consists of actual cluster
labels properties in rows and predicted cluster labels proper-
ties in columns, as shown in Table 2 as follows.

– The true negative (TN) is the number of clean entities
that are predicted as clean.

– The false positive (FP) is the number of clean entities
that are predicted as defective and is usually called Type
I Error.

– The false negative (FN) is the number of defective entities
that are predicted as clean and is usually called Type II
Error.

Table 2 Confusion matrix

Actual Predicted

False (clean) True (defective)

False (clean) True negative (TN) False positive (FP)

True (defective) False negative (FN) True positive (TP)

– The true positive (TP) is the number of defective entities
that are predicted as defective.

The predictive performance measures (Hall et al. 2012)
are then computed as follows.

– recall: it represents the proportion of defective entities
to the all entities that are actually defective, which is
formulated by Eq. 16, and is usually called as sensitivity
or true positive rate.

recall = TP

TP + FN
(16)

– precision: it represents the proportion of defective enti-
ties to the all entities that are correctly predicted as
defective, which is formulated by Eq. 17.

precision = TP

TP + FP
(17)

– accuracy: it represents the proportion of all entities that
are correctly predicted to the total of entities, which is
formulated by Eq. 18.

accuracy = TP + TN

TP + FP + FN + TN
(18)

– AUC : it stands for Area under Curve of ROC (the
receiver operating characteristics), which is constructed
by the true positive rate and false positive rate as a single
curve. The true positive rate is calculated by Eq. 16, while
the false positive rate (Zhang et al. 2017) is calculated by
Eq. 19.

fpr = FP

FP + TN
(19)

5 Experimental results and discussion

This experiment consists three stages that are data prepro-
cessing, clustering, and labeling. The first stage is performing
the data preprocessing by applying the z-score transforma-
tion on each dataset. The second stage is obtaining the dataset
clusters by applying the signed Laplacian-based spectral
clustering. The last stage is labeling each both clusters and

123

13686 A. Marjuni et al.

Fig. 4 The box-plot of a skewness and b kurtosis of datasets

entities, whether defective or clean. The details of the exper-
imental results are presented in this section.

5.1 Data preprocessing

Software metrics have varying scales in the range of val-
ues. In data mining, the software metrics data are commonly
normalized to make each metric contribute to the defect pre-
diction model in the same of scale (Nam et al. 2013).

In this experiment, the z-score transformation in Eq. 1
is applied to rescale the datasets within the values of 0 to
1. However, this z-score transformation only rescales the
spread of raw data distribution and does not change the shape
of distribution based on the skewness and kurtosis values.
The z-score transformation itself is a data transformation that
could make the software metrics closes to the standard nor-
mal distribution (Zhang et al. 2016), and it also improves
the prediction performance of classification models (Nam
et al. 2013). Hence, it needs to select another normalization
method not only to rescale the dataset, but also leads the
normalized distribution characteristics at once.

The skewness and kurtosis values among all datasets after
z-score transformation are illustrated in Fig. 4. Almost all
datasets have highly skewed compared to the ideal skewness,
where the ideal skewness values are in the range of −0.8
to 0.8. Also, almost kurtosis values still have highly values

Fig. 5 Adjacency and absolute adjacency matrices distribution of CM1
subset dataset

compared to the zero value as the perfect kurtosis (Osborne
and Carolina 2010).

5.2 Clustering

The clustering process is started by constructing the adja-
cency matrix of W using Eq. 2. The adjacency matrix could
contain a negative, zero, and positive values. To meet the
nonnegative Laplacian matrix assumption, the negative val-
ues of adjacency matrix are converted into its positive values
by absolute transformation. For illustration, Fig. 5a and b
shows the example of adjacency matrix values distributions
using the CM1 dataset, before and after absolute transfor-
mation, respectively. All of the negative values in adjacency
matrix in Fig. 5a are transformed into their absolute values,
as shown in Fig. 5b.

123

Unsupervised software defect prediction using signed Laplacian-based spectral classifier 13687

Fig. 6 Eigen values and eigenvectors of signed and unsigned Laplacian
of CM1 subset dataset

The next step is calculating the Laplacian matrix. Fig-
ure 6a and b shows the eigenvalues and eigenvectors of
unsigned Laplacian, respectively. The second smallest eigen-
value of unsigned Laplacian is closer to zero and makes
the wide gap with the other eigenvalues. For the signed

Table 4 Performance comparison of spectral clustering (in DBI)

Dataset Unsigned Laplacian Signed Laplacian

CM1 1.3 1.3

KC3 1.6 1.4

MC1 1.9 2.0

MC2 1.7 1.9

MW1 1.4 1.4

PC1 2.2 1.9

PC2 2.7 2.2

PC3 2.8 2.4

PC4 2.4 1.8

PC5 2.6 2.1

The bold font indicates the better performance

Laplacian, the second smallest eigenvalue become higher
and makes the distribution of eigenvectors more compact,
as shown in Fig. 6c and d, respectively. These changes are
due to the increase in the number of positive signs, as shown
in Table 3, and represent the increase in similarities between
entities.

The second smallest eigenvalue itself will be used to select
the appropriate eigenvectors for the clustering. Suppose v1 is
the second smallest of signed Laplacian matrix, and v1i is the
eigenvectors correspond to the v1, where i = 1, 2, . . . , n and
n is the number of entities. For clusteringprocess, all software
entities with v1i ≥ 0 are separated to the defective cluster,
otherwise, the remaining software entities are separated to
the clean cluster.

The performances of these clustering methods are evalu-
ated using the DBI values, as shown in Table 4. The proposed
method outperforms the baseline method on five datasets
(KC3, PC1, PC2, PC3, PC4, and PC5), fairly comparable

Table 3 Overview of adjacency matrix values

Dataset Number of signed values in W a Number of signed values in W b
0 Number of signed values in W c

a

+ 0 − + 0 + 0

CM1 2128 0 4752 47,606 11,734 59,168 172

KC3 2909 0 4891 10,586 9514 20,000 100

MC1 95,909 0 2,56,617 1,431,208 1,162,295 2,592,364 1139

MC2 1705 0 3248 4717 3414 8064 64

MW1 3395 0 6373 17,886 17,094 34,848 132

PC1 16,526 0 35,237 505,496 473,804 978,600 700

PC2 17,234 0 39,520 640,688 616,217 1,256,112 793

PC3 13,114 0 28,511 318,164 315,211 632,812 563

PC4 9096 0 18,987 146,454 141,966 288,040 380

PC5 15,486 0 51,812 734,118 834,988 1,568,220 886

aW : raw dataset matrix after z-transformation
bW0: adjacency matrix of W with zero transformation
cWa : adjacency matrix of W with absolute transformation

123

13688 A. Marjuni et al.

Table 5 Performance
comparison of unsigned
Laplacian (SL) and signed
Laplacian (UL) based spectral
classifiers

Dataset precision recall accuracy AUC

UL SL UL SL UL SL UL SL

CM1 0.68 0.72 0.92 0.92 0.66 0.71 0.68 0.68

KC3 0.71 0.78 0.87 0.88 0.67 0.75 0.64 0.75

MC1 0.79 0.76 0.96 0.94 0.78 0.78 0.69 0.67

MC2 0.77 0.74 0.76 0.71 0.69 0.68 0.68 0.75

MW1 0.69 0.69 0.95 0.95 0.69 0.69 0.70 0.70

PC1 0.70 0.73 0.95 0.94 0.67 0.75 0.75 0.78

PC2 0.63 0.72 0.90 0.89 0.64 0.77 0.76 0.76

PC3 0.67 0.72 0.93 0.92 0.65 0.79 0.72 0.77

PC4 0.68 0.79 0.91 0.90 0.67 0.72 0.65 0.67

PC5 0.75 0.78 0.87 0.81 0.79 0.78 0.71 0.74

Average 0.71 0.74 0.90 0.89 0.69 0.74 0.70 0.73

The bold font indicates the better performance

on two datasets (CM1 and MW1), but underperforms on the
other two datasets (MC1 and MC2). Using the two-tailed
Wilcoxon signed-rank test at the 95% of confidence level
results, the p-value of this test is 0.0469 with the z-value
of −2.0304. Hence, the null hypothesis H01 is rejected and
the performance of both clustering methods is significantly
different with the DBI’s median values of 2.05 and 1.90,
respectively. It means that the proposed method could pro-
duce a better performance in term of compactness.

5.3 Labeling

Labeling of all software entities is performed by comput-
ing the row sum of all entities in all clusters using the signed
Laplacian-based spectral classifier (SL). To compare the per-
formance, the unsigned Laplacian-based spectral classifiers
(UL) is chosen as the baseline method. Table 5 shows the
performance of the baseline and the proposed methods.

In term of precision, as shown in Table 5, the proposed
method outperforms the baseline method in CM1, KC3,
PC1, PC2, PC3, PC4, and PC5 datasets. However, the pro-
posedmethod underperforms inMC1 andMC2 datasets. The
precision average values of both classifiers are 0.71 and
0.74, respectively. It means that the baseline and the pro-
posed method correctly predict about 71% and 74% of all
predicted defective entities. Using the two-tailed Wilcoxon
signed-rank test at 95% level of confidence results, the p-
value is 0.049 and the z-value is −2.0732. Since the p-value
is less than 0.05, then the H02 is rejected and the precision
performances of these classifiers are significantly different.

In term of recall, the baseline method outperforms the
proposed method in almost of datasets. In this performance,
the proposed method outperforms only on KC3 dataset, as
shown in Table 5. The recall average values of both clas-

sifiers are 0.90 and 0.89, respectively. It means that the
baseline and the proposed methods correctly predict about
90% and 89% of all actual defective entities, respectively.
These recall performances are significantly different by
the two-tailed Wilcoxon signed-rank test with 95% level of
confidence, where the p-value is 0.0469 and the z-value is
−2.1004. Since the p-value is less than 0.05, then the H02

is rejected and the recall performance of both classifiers are
significantly different. Based on the recall values, both of
classifiers have a high recall. It means that these classifiers
predict the labels of entities correctly when compared to the
actual labels.

In terms of accuracy, the proposed method is more
accurate to predict the defective entities than the baseline
method. As shown in Table 5, the accuracy average values
of the baseline and the proposed methods are 0.69 and 0.74,
respectively. The proposed method outperforms the baseline
method onCM1,KC3, PC1, PC2, PC3, and PC4 datasets, but
underperforms on MC2 and PC5. The two-tailed Wilcoxon
signed-rank test at 95% level of confidence in performance
shows that the accuracy of both classifiers is significantly dif-
ferent, with the p-value is 0.0313 and the z-value is−2.1004.

The proposedmethod is also evaluated by the AUC values
on each dataset. The AUC value represents the probability of
classifier to rank the randomly chosen defect module higher
than the randomly chosen non-defect modules (Wahono et al.
2014). The AUC average values of the proposed and baseline
methods are 0.70 and 0.73, respectively. This performance is
significantly different using the two-tailed Wilcoxon signed-
rank test at 95% level of confidence, where the p-value is
0.0469 and the z-value is −2.1129. In terms of AUC , the
proposed method outperforms the baseline method on KC3,
MC2, PC1, PC3, PC4, and PC5, as shown in Table 5.

123

Unsupervised software defect prediction using signed Laplacian-based spectral classifier 13689

5.4 Discussion

In summary, the proposed method could improve the per-
formance in precision, accuracy, and AUC , although
it underperforms in the recall term. This performance
improvementwas suspected due to the increase in the number
of similarities between entities through the implementation
of absolute signed Laplacianmatrix. In this case, the negative
values of adjacency matrix were considered as the positive
similarity basedon their absolute values rather than converted
to zero. As the result, the number of similarities between enti-
ties in the absolute adjacency matrix increases, as shown in
Table 3.

The increase in the numbers of similarities will affect to
the signed Laplacian clustering and classifier, because the
Laplacian matrix itself is built by the absolute adjacency
matrix. For example, if two entities have negative similar-
ity, then the adjacency values in the unsigned Laplacian
matrix of this similarity is converted into the zero values to
meet the characteristic of the nonnegative Laplacian matrix
and it is considered as no similarity between those entities.
Conversely, the negative value in the adjacencymatrix is con-
verted to their absolute values in the signed Laplacian matrix
and considered as positive similarity. Hence, the number of
similarities between entities become increases and it affects
to the signed Laplacian-based clustering performances.

Another finding of this experiment is found in the use
of z-score transformation for the preprocessing phase in
the baseline method. The z-score transformation is used to
standardize the dataset to close to the standard normal dis-
tribution. However, the z-score transformation did not alter
the value of skewness and kurtosis in order to lead to the
normal distribution. Besides, if the attribute value is larger
than its average, then it will lead the negative values that
well known as an issue in the Laplacian matrix assumption.
The signed Laplacian itself is usually proposed to meet the
Laplacian matrix assumption. Hence, it is necessary to try
another transformation in future experiment in order to avoid
the issues of the spectral-based clustering and classification.

6 Conclusions

Spectral classifier has been applied successfully in unsuper-
vised software defect prediction application area to solve
unavailability and heterogeneity issues in training dataset.
However, the use of spectral classifier becomes a main issue
when the adjacency matrix has a negative value since the
spectral classifier works with nonnegative Laplacian matrix
which is built by the adjacency matrix.

In this experiment, the signed Laplacian-based spectral
classifier has been proposed on the spectral-based clustering
and classification to address the negative values of adja-

cency matrix. In this proposed method, the negative values
are converted into the absolute values to increase the num-
ber of similarities. The experimental results show that the
signed Laplacian classifier achieves better performance than
the unsigned Laplacian-based spectral classifier in term of
precision, accuracy, and AUC . Besides, the proposed
method is also suitable to be applied for spectral clustering
instead using the unsigned Laplacian matrix.

For future works, the next two experiments could be
considered to improve the signed Laplacian-based spectral
classifier. First, selecting the best data transformations for
data preprocessing to avoid the negative values in the adja-
cency matrix, and also to increase the normality of dataset
distribution. Second, applying a feature selection method
on dataset to construct the signed Laplacian only with the
relevant attributes to increase the performance of spectral
classifier.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

Human and animal participants This article does not contain any stud-
ies with human participants or animals performed by any of the authors.

Informed consent Informed consent was obtained from all individual
participants included in the study.

References

Abaei G, Rezaei Z, Selamat A (2013) Fault prediction by utilizing self-
organizing map and threshold. In: Proceedings of the 2013 IEEE
international conference on control system, computing and engi-
neering (ICCSCE), pp 465–470

Aggarwal CK, Reddy C (2014) Data clustering: algorithms and appli-
cations. CRC Press, Boca Raton, pp 177–194

Arar ÖF, Ayan K (2015) Software defect prediction using cost-sensitive
neural network. Appl Soft Comput 33:263–277

Bishnu PS, BhattacherjeeV (2012) Software fault prediction using quad
tree-based K-means clustering algorithm. IEEE Trans Knowl Data
Eng 24(6):1146–1150

Catal C, Sevim U, Diri B (2009) Software fault prediction of unlabeled
program modules. In: Proceedings of the world congress on engi-
neering, pp 1–6

Gallier J (2016) Spectral theory of unsigned and signed graphs. appli-
cations to graph clustering: a survey, pp 1–122. arXiv:1601.04692

Hall T, Beecham S, Bowes D, Gray D, Counsell S (2012) A system-
atic literature review on fault prediction performance in software
engineering. IEEE Trans Softw Eng 38(6):1276–1304

He Z, Shu F, Yang Y, Li M, Wang Q (2012) An investigation on the
feasibility of cross-project defect prediction. Autom Softw Eng
19(2):167–199

Knyazev AV (2017) Signed Laplacian for spectral clustering revisited,
pp 1–24. arXiv:1701.01394v1

Kunegis J, Schmidt S, Lommatzsch A, Lerner J, De Luca EW,Albayrak
S (2010) Spectral analysis of signed graphs for clustering, predic-

123

http://arxiv.org/abs/1601.04692
http://arxiv.org/abs/1701.01394v1

13690 A. Marjuni et al.

tion and visualization. In: Proceedings of the SIAM international
conference on data mining, pp 559–570

Lee T, Nam J, Han D, Kim S, In H (2016) Developer micro interac-
tion metrics for software defect prediction. IEEE Trans Softw Eng
42(11):1015–1035

MenziesT,MiltonZ,TurhanB,CukicB, JiangY,BenerA (2010)Defect
prediction from static code features: current results, limitations,
new approaches. Autom Softw Eng 17(4):375–407

Menzies T, Krishna R, Pryor D (2016) The promise repository of empir-
ical software engineering data. North Carolina State University,
Department of Computer Science, Raleigh

Nam J, Kim S (2015) CLAMI: defect prediction on unlabeled datasets.
In: Proceedings of the 30th IEEE/ACM international conference
on automated software engineering (ASE), pp 452–463

NamJ,PanSJ,KimS (2013)Transfer defect learning. In: Proceedings of
the 35th international conference on software engineering (ICSE),
vol 34(2), pp 382–391

Nam J, Fu W, Kim S, Menzies T, Tan L (2017) Heterogeneous defect
prediction. IEEE Trans Softw Eng 99:1–23

Ni C, Liu WS, Chen X (2017) A cluster based feature selection method
for cross-project software defect prediction. J Comput Sci Technol
32(6):1090–1107

Osborne JW, Carolina N (2010) Improving your data transformations:
applying the Box-Cox transformation. Pract Assess Res Eval
15(12):1–9

Petersen K (2011) Measuring and predicting software productivity: a
systematic map and review. Inf Softw Technol 53(4):317–343

Punitha K, Chitra S (2013) Software defect prediction using software
metrics: a survey. In: Proceedings of the the 2013 international
conference on information communication and embedded systems
(ICICES), pp 555–558

Ryu D, Jang JI, Baik J (2015) A hybrid instance selection using nearest-
neighbor for cross-project defect prediction. J Comput Sci Technol
30(5):969–980

Tomar D, Agarwal S (2016) Prediction of defective software modules
using class imbalance learning. Appl Comput Intell Soft Comput
2016:1–12

Wahono RS (2015) A systematic literature review of software defect
prediction: research trends, datasets, methods and frameworks. J
Softw Eng 1(1):1–16

Wahono RS, Suryana N, Ahmad S (2014) Metaheuristic optimization
based feature selection for software defect prediction. J Softw
9(5):1324–1333

Zaki MJ, Wagner MJ (2014) Data mining and analysis. Cambridge
Univerity Press, Cambridge, pp 472–514

Zhang H, Zhang X (2007) Comments on ‘data mining static code
attributes to learn defect predictors’. IEEE Trans Softw Eng
33(9):635–636

Zhang F,Mockus A, Keivanloo I, Zou Y (2014) Towards building a uni-
versal defect predictionmodel. In: Proceedings of the 11thworking
conference on mining software repositories (MSR), pp 182–191

Zhang F, Zheng Q, Zou Y, Hassan AE (2016) Cross-project defect
prediction using a connectivity based unsupervised classifier. In
Proceedings of the 38th international conference on software engi-
neering (ICSE), pp 309–320

ZhangF,Keivanloo I, ZouY (2017)Data transformation in cross-project
defect prediction. Empir Softw Eng 22:3186–3218

Zhong S, Khoshgoftaar TM, Seliya N (2004) Unsupervised learning for
expert-based software quality estimation. In: Proceedings of the
eighth IEEE international conference on high assurance systems
engineering, pp 149–155

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

	Unsupervised software defect prediction using signed Laplacian-based spectral classifier
	Abstract
	1 Introduction
	2 Related works
	3 Proposed method
	4 Experimental setup
	4.1 Dataset
	4.2 Experiment design
	4.3 Performance evaluation

	5 Experimental results and discussion
	5.1 Data preprocessing
	5.2 Clustering
	5.3 Labeling
	5.4 Discussion

	6 Conclusions
	References

