Jurnal-internasional-2018

by Maryani Setyowati

Submission date: 26-Jun-2018 01:59PM (UTC+0700)
Submission ID: 978644900

File name: Jurnal_Computer_Science_2018.pdf (251.54K)
Word count: 6977

Character count: 33733

Journal of Computer Science

Case Reports

Query Optimization on Distributed Database Dengue Fever

by Minimizing Attribute Involvement

'Slamet Sudaryanto Nurhendratno, 'Sudaryanto, 'Fikri Budiman and *Maryani Setyowati

Faculty of Computer Science, Dian Nuswantoro University, Semarang, Indonesia
2y z r r s . - .
“Faculty of Health, Dian Nuswantoro University, Semarang, Indonesia

Article history
Received: 25-01-2018
Revised: 12-03-2018
Accepted: 05-04-2018

Corresponding Author:

Slamet Sudaryanto
Nurhendratno

Faculty of Computer Science,
Dian Nuswantoro University.
Semarang. Indonesia

Email: slametalica301@dsn.dinus.ac.id

Abstract: Query optimization is an important task in a client/server
environment of a distributed database, whereas a health epidemiologist data
distribution based on DBD data on Geographic Information Systems (GIS).
A proper method for a particular query process function is needed to
generate query optimization on a distributed database. The query process
requires important attention especially in distributed databases because the
result of a cost-based query process is accessed by involving a number of
attributes and visited sites. A query operation typically will search for data
from various attributes in a scattered database table, although the processes
do not require all table attributes. Query optimization requires minimum
query operating costs (communication costs and access fees). The query
cost can be optimized by separating attributes that are not required by the
query. This can reduce the amount of communication and access time. The
attributes should not be divided indiscriminately to obtain the best result of
the query process and a vertical fragmentation method can be used to
perform such attribute separation. In this research, attributes separation
using vertical fragmentation method for a database health table is studied
by comparing Bond Energy Algorithm (BEA) and Graphic Based Vertical
Partitioning (GBVP) algorithm. The initial result of vertical fragmentation
in both algorithms is the determination of types of attributes separated from
a number of specific query process. The result of the separation of
attributes from each algorithm is compared and evaluated using Partitioned
Evaluator (PE) in order to achieve the access cost of several attributes. The
results show that GBVP algorithm is more optimal for use in vertical table
fragmentation process applied as query operation on distributed DBD
database in a health field. The GBVP algorithm has less computational
complexity, results a higher partition evaluator value and has lower query
execution time than BEA.

Vertical

Keywords: Query Distribution Fragmentation,

Optimization, BEA, GBVP, PE

Process,

Introduction

An increase of a large and complex database can
decrease the performance and cost overruns of data
access information system. Performance reduction and
cost overruns occur due to function query accesses data
retrieval from various attributes contained in a database
table in which not all the attributes in the table are
required. A distributed database can be implemented to
improve the performance and reduce the cost of data
access on a database. The process of designing a

Yy, Science
//1 Publications

Distributed Databases is complex, so a data
fragmentation (partitioning) scheme was used to
facilitate a design process of a Distributed Databases
(Al-Sayyed et al., 2014).

Fragmentation is a process of division or mapping of
tables based on the columns and rows of data into the
smallest unit of data. Data fragmentation is a process of
division or mapping of a database where it is broken
down by columns and rows stored in a computer site or a
different unit in a data network, allowing for decisions to
divided data (Abdalla and Amer, 2012). Data

© 2018 Slamet Sudaryanto Nurhendratno, Sudaryanto, Fikri Budiman and Maryani Setyowati. This open access article is

distributed under a Creative Commons Attribution (CC-BY) 3.0 license.

Slamet Sudaryanto Nurhendratno ef al. / Journal of Computer Science 2018, 14 (4): 466476

DOL: 10,3844/ jessp.2018.466.476

fragmentation can be accomplished in several ways,
including horizontal and vertical fragmentation.
Horizontal fragmentation consists of a global fragment
tuple subdivided or partitioned into several sub-sets. A
blocking for this type is very useful in a distributed
database, where each sub-sets can contain data that
generally have a property. Vertical fragmentation
subdivides the attributes of an available global fragment
into several groups or subclass (Bhaskar and Sharma,
2012). The simplest form of vertical fragmentation is
decomposition, where a row of unique-id can be
included in each fragment to ensure and enable the
reconstruction process through join operations. This
fragmentation divides data into multiple tables which
form interrelated attributes. This study was limited to
test vertical fragmentation efficiency with Bond Energy
Algorithm (BEA) and Graph-Based Vertical Partitioning
(GBVP) algorithm. The main purpose of fragmentation
is to minimize the number of access-related and share a
relationship based on the efficiency of queries that are
most frequently accessed (Al-Sayyed er al., 2014). To
make the process of vertical fragmentation in the
database to be tested, is based on the calculation of the
algorithm Bond Energy (BEA) and the algorithm Graph-
Based Vertical Partitioning (Rahimi and Riahi, 2015).

BEA is an algorithm used for a vertical fragmentation
process. Information given about the use of attributes
with initial transaction is converted into a square matrix
referred to as the attribute affinity matrix which then is
diagonalized by a cluster algorithm as the basis for
calculating the bond energy algorithm. GBVP algorithm
has less complexity in computing and produces meaning
fragments with graphs. The affinity matrix is transformed
into an affinity graph in order to partition the fragment
based on defined rules and steps (Fung et al., 2002).

A vertical fragmentation design is initialized by
building an Attribute Affinity matrix (AA). This matrix
is used as the input generated from a multiplication of an
attribute usage matrix with attribute query access matrix.
The affinity matrix is then calculated using BEA to
generate a clustered affinity matrix (Hoffer and Severance,
1975). The clustered affinity matrix determines attributes
fragmentation. The calculation in GBVP algorithm has the
same initial steps with BEA which is to perform an
affinity matrix as the input. The matrix is then
converted into a graph and the table is fragmented
following the GBVP algorithm rules. Further, the rules
for candidates identify a fragmentation of forming a
cycle. The cycle can be extended to improve a decision
fragmentation. The process runs until reaching at the
end of a node. The results of the fragmentation of these
algorithms are compared and evaluated using Partition
Evaluators (PE) to determine which algorithm has
performance that is more optimal.

In this research, an optimization of queries vertically
generated on a fragmented table relationship using
GBVP algorithm and BEA is analyzed and compared,

where the implementation of BEA has been previously
studied on a database in medical records management
information system (Nurhendratno and Budiman, 2017).

Related Research

A clustering method based on vertical fragmentation
to increase the system performance has become trend in
a distributed database study, especially in determining
the cost of query access. An implementation of vertical
fragmentation by performing attributes clustering in a
process of fragmentation in a distributed database was
proposed by Rahimi and Haug (2010).

The method comprises two main algorithms. The first
algorithm is used to place a set of data by simultaneously
allocating the relevant elements and separating irrelevant
elements. The second algorithm is used to cluster in
which groups are created to determine a point to make
pieces of a dataset. The main part of making vertical
fragmentation in a distributed database is to find groups
which contain relevant attributes in a relation table based
on the affinity matrix value.

Affinity matrix contains a number of attributes with
other attributes (the number of simultaneously accessing
two attributes). The iteration in this algorithm is used
and based on the grouping matrix » x n affinity matrix
that will be used as the basic matrix in table
fragmentation process that will be done (Rodriguez and
Li, 2011). Initialization is conducted by downloading
one column and placing it in the first column of the
output matrix. [teration step / n-i have a column on the
left at the position / + 1 which allows the output matrix
that will generate the greatest contribution to the
calculation affinity calculations. Row ordering, at this
step, the lines will be set the same as the column setting.
Contributions from Ak column, which is placed between
Ai and Aj. The next step is to calculate the number of
accesses performed on each fragment is formed, then
calculate the value maximize split quality (sq) of each
fragment. The research has proven attributes in the
cluster system will have a direct impact on the cost
savings of storage and access costs. The study carried
out by Hoffer and Severance (1975) can find a
combination linearly with the cost of storage, retrieval
and update the capacity restrictions for each file.

The fragments are separated into two-stage approach
which are overlapping and non-overlapping fragments
(Navate ef al., 1984). The first stage is based on the
empirical objective function and performs cost
optimization by combining knowledge of the specific
application environment in the second phase. Cornell and
Yu (1990) proposed a model in a vertical partition
problem as a programming problem of round number with
the aim to minimize the number of disk accesses. This
model uses certain physical factors related to the object
files (attributes, length, selectivity and cardinality).

Slamet Sudaryanto Nurhendratno ef al. / Journal of Computer Science 2018, 14 (4): 466476

DOL: 10,3844/ jessp.2018.466.476

GBVP algorithm and BEA is analyzed and compared
using the same affinity matrix, where the implementation
of BEA has previously been studied on a database in
medical records management information system by
Nurhendratno and Budiman (2017), in which graph
affinity was created by removing the existing value of 0
in the affinity matrix.

Analysis Comparison of Vertical
Fragmentation

Bond Energy Algorithm

Bond Energy Algorithm (BEA) proposed by Hoffer,
Severande and McCormick is an algorithm that can be
used for vertical fragmentation process in a distributed
database (Runeeanu, 2008). BEA Algorithm is divided
into two steps, the first step is used to put a group of
related data by allocating data elements simultaneously
(elements who have no connection separated) and the
second step can be used to form a group that is in charge
of determining the point of a set of data (create cluster).
The important thing in creating a vertical fragmentation
in a distributed database is finding attributes which have
been clustered in a relational table based on the affinity
value in matrix of an attribute.

Affinity matrix is a matrix containing number of
attributes which are mutually bound (number of access
of two simultaneous attributes). BEA uses affinity matrix
as an input to form clustered affinity matrix. Split
function produces a clustered affinity matrix in the
following steps: Initialization: Select and place one at
random columns of the matrix into the matrix Clustered
Affinity. The iteration step i: Place a column »-i at position
+ 1 in the matrix Clustered Affinity. Rules contributions
columns are illustrated in the following formula:

Count (Ai. Ak, Af) = bond (Ai. Ak) + bond (Ak. Af) — bond (Ai, Af)

Graph-Based Vertical Partitioned Algorithm

Graph-Based Vertical Partitioning (GBVP) is
different with the BEA. GBVP has a less computational
complexity and produces fragments that have meaning
by using a graph method. The input for GBVP algorithm
is an affinity matrix considered a complete graph known
as affinity graph where an edge value represents affinity
between two attributes. A linearly connected spanning tree
is then formed. This algorithm produces all fragments that
have meaning in one iteration (Cornell and Yu, 1990).
The steps of the algorithm in generating vertical
fragments with affinity graph are:

I. Build an affinity graph from object attributes. Note
that the matrix affinity is a sufficient data structure
to represent the graph. No additional physical data
storage is required

2. It can be started from any node
3. Select the edge that completes the conditions below:

e |t must be connected to the binary tree that is
already established

e It must have the greatest value among all
existing edge selection

e The iteration will end when all the nodes have
already been used

4. If the next selected edge forms a primitive cycle:

e If there is no node cycle, check all possibility
cycles and if there is a possibility, mark the
cycle as the affinity cycle. Return to step 3

e If the there is an existing node cycle, remove
the edge and continue to step 3

5. If the next selected edge does not form a cycle and
there is a partition candidate, then:

e If no former edge is found (selected edge is in
between the last piece and a node cycle), check
a possibility of a cycle extension of the new
edge. If there is no possibility found, cut the edge
and the cycle will be a partition. Return to step 3

e Ifaformer edge is found, change the cycle node
and check the possibility of a cycle extension
by the former edge. If there is no possibility
found, cut the former edge and the cycle will be
a partition. Return to step 3

Partition Evaluator

Partition Evaluator (PE) is a function to compare and
evaluate different algorithms, using the same input on
the process of designing a database. In the process of PE,
the input used is an accessing attributes matrix followed
by designing an Evaluaror used to evaluate in finding the
better partition or fragmentation (Lisbeth and Li, 2011).
There are two common terms in PE which are
"irrelevant local atiribute access cost” and "relevani
attribute remote access cost".

Irrelevant local attribute access costs measures the
cost of the transaction process which due to irrelevant
attributes and assumes that all needed data fragments by a
transaction are locally available. frrelevant local atiribute
access cost is described by the following formula:

2 ¥ M g R,
Ey= Z::Zruqu_ *lR,,;| *{I_M}

iy

where, |R,| is the number of attributes that are relevant

in a fragment. While the relevant remote attribute access
cost measures a remote processing costs caused by the
relevant attributes of accessed data fragments.
Relevant remote attribute access cost illustrated by
the equation formula:

Slamet Sudaryanto Nurhendratno ef al. / Journal of Computer Science 2018, 14 (4): 466476

DOL: 10,3844/ jessp.2018.466.476

=3 i 3 ol el

ik

where, |R,| is the number of attributes that are relevant
in another fragments. While the function of PE is:

PE=FE, +E,

The definition and notation used in the PE functions are:

T = The number of transactions that are below the
consideration

O, = Transaction frequency r, forr=1,2,.. T

M = The number of fragments of a partition

n'. = The number of attributes that are accessed k

itk
fragments and fragments associated with the
transaction of's

R, = The number of relevant attributes in fragment &

itk
accessed and related with fragment [by
transaction ¢

Comparison Process of BEA and GBVP

In this research, the author proposed a procedure
completion that will be done as the main purpose of this
research. The process below is an example of vertical
fragmentation process in a certain case:

A = (ICD, patient name, address, gender,
date of birth) are the attributes of the patient
table and a query used is:

ql = Select ICD, address from Patient

q2 = Select ICD, from Patient where date_of birth =

value

q3 = Select ICD, patient name from Patient where
gender = value

qd4 = Select gender, address from Patient where

date_of birth = value

where, Al = ICD, A2 = Patient name, A3 = Address,
A4 = Gender, A5 = Date_of birth.

A matrix of the use of the attributes from attributes
and query above is.

Next is calculating the frequency of each query on
the entire web.

Next is building an affinity matrix resulted from
multiplication of matrix of the use of the attributes with
matrix of attributes and query access.

Approach with BEA

After forming affinity matrix, next is creating a cluster
matrix from several attributes using split function.

The BEA uses affinity matrix as inputs to form a
clustered affinity matrix. The contribution is calculated
by randomly selecting two columns in the affinity matrix.
A sorting result from the process produces the maximum
value contribution which is [A3, Al, A5, A4, A2].

The next step is calculating the number of the
accesses of each existing fragment by calculating the
quality split value in each fragment:

1. Splitat: [Al, A2, A3, A5]|[A4]
Access fragment] = 51
Access fragment2 = 0
Aksesfragment] and fragment2 = 31
Split quality = (51x0) - (£31] "2)=-961
2. When fragmentation is done at: [Al, A2, A5] |
[A4, A3]
Access fragmentl = 29
Access fragment2 = 0
Accessfragment] and fragment2 = 53
Split quality = (29x0)-([531] ~2)=-2809
3. When fragmentation is done at: [Al, A5] | [A3,
A4, A2]
Access fragmentl = 0
Access fragment2 = 0
Accessfragment] and fragment2 = 82
Split quality = (0x0)—([82] ~2)=-6724
4. When fragmentation is done at: [Al] | [A2, A3,
Ad, A5]
Access fragmentl = 0
Access fragment2 = 11
Accessfragment | and fragment2 = 71
Split quality = (0x11)- (711 ~2=-5041
5. When fragmentation is done at: [Al, A3, A4, AS]
[[AZ]
Access fragmentl = 62
Access fragment2 = 0
Accessfragment] and fragment2 = 20
Split quality = (32x0)- [20] ~2=-400

Based on the results, it can be concluded that the
fragmentation with the maximum quality split is sg = — 400
on the fragmentation done at [A 1, A3, A4, A5]|[A2].

Approach With GBVP

GBVP algorithm uses the same affinity matrix with
previous that generated by BEA as describe in Table 3.
The graph affinity is made by removing value 0 in the
affinity matrix. The graph can be seen in Fig. | where
this process is conducting by starting from the node 1
(step 2) and follow by selecting the edgel-5 (step 3) and
choosing the edge 5-3 edge as the next edge and forming
a candidate to be partitioned (step 4). Note that the node
1 is a node cycle.

Slamet Sudaryanto Nurhendratno ef al. / Journal of Computer Science 2018, 14 (4): 466476
DOL: 10,3844/ jessp.2018.466.476

Value
Q1 on fragment 1
Q1 on fragment 2

Q2 on fragment |
tQ2 on fragment 2

Q3 on fragment 1
Q3 on fragment 2

Q4 on fragment |

Fig. 1: Graph of alTinity Q4 on fragment 2

2) Calculate relevant remote atiribute access cost:

Value Minimum
12%0%(0/1) =0
0%*2%(2/4) = 0; (0)

1250%(0/1) = 0
0%%2%(2/4) = 0; (0)

12%1%(1/1) = 1
12$2%(2/4) = 1; (1)

12%0%(0/1) =0
07*3%(3/4) = 0; (0)

[

ZU/

Fig. 2: Results fragmentation GBVP Algorithm, starting from
node 1

The process is continued by selecting the edge 3-1,
(check step 3), so the cycle of 1, 3, 5 is considered as a
partition for the edge 1-2 and 24 are not eligible contained
in step 4.2 and 5.1. Both of the edges cannot forming a
cycle and the existence of a partition candidate and cycle
node appear on the graph. The results of the process of the
algorithm above are shown in Fig. 2 that the GBVP
algorithm produces two affinity cycles separated by edge 1,
2 and two fragments which are (1, 3, 5) and (2, 4).

Two fragments which are (1, 3, 4, 5) and (2) are resulted
from BEA and two fragments which are (1, 3, 5) and (2, 4)
are resulted from GBVP algorithm. Partition Evaluator (PE)
is use to compare and evaluate the resulted fragments from
these algorithms. The inputs used in the process of PE are
attribute accessing matrix (Table 1).

PE Calculations (Using BEA Algorithin)
1) Calculate frrelevant local attribute access cost:
Ey ={(P 2% (1-2/4))+ (17 +2%(1-2/4))
+(r *2*(1—1;4))+(13*3*(1—314))}
+{(P=1e(1-1/1))}

=3.75+0
=375+0

E2=0+0+1+40=1
So, PE=EL +E =375+1=4,75

PE Calculations (Using GBVP Algorithm)

1) Calculate frrelevant local attribute access cost

B ={(P*2+(1-2/3))+(1?*24(1-2/3))
+(w10 (1-1/3))+ (2224 (1-2/3))}
+{(P*22(1-2/2))+ (P *2%(1-1/2))}
+(0,667 +0,667 +0,667) + (0 +0.5)
=3,168
2) Calculate relevant remote attribute access cost:
Value Minimum

17#0*(0/2) = 0
02#2%(2/3) = 0; (0)

Value
Q1 On fragment 1
Q1 On fragment 2

Q2 On fragment 1~ 17*0%(0/2) = 0

Q2 On fragment 2 02*2*(26} =0:(0)
Q3 On fragment | 17*¥2%(2/2) =
Q3 On fragment 2 12*1%(1/3) = 1/3 = 0,33;(0,33)

Q4 On fragment 1 1>*1%(1/2)=1/2=0,5
Q4 On fragment 2 17* 2%(2/3)=4/3 =1,3;(0,5)
El=0+0+033+0,5=083

So, PE=E}, +E; =3,168 + 0,83 = 3,998
Complexity Analysis

A good algorithm is an efficient algorithm, the
efficiency of the algorithm is measured by the amount of
time and memory space needed to run the algorithm. An
efficient algorithm is an algorithm that minimizes time
and space requirements. The algorithm can be said to be
good or efficient is it requires formal criteria used to
assess the algorithm that is with its complexity.

Slamet Sudaryanto Nurhendratno ef al. / Journal of Computer Science 2018, 14 (4): 466476

DOL: 10,3844/ jessp.2018.466.476

There are two kinds of algorithm complexity, namely
the complexity of time and space. The time complexity
of the algorithm is to measure the number of
computations performed by a computer when solving a
problem using an algorithm. The size in question refers to
the number of calculation steps and processing time of the
processing. The time complexity of the algorithm contains
the number expressions and the number of steps required
as a function of the size of the problem. The complexity of
space relates to the system memory required in program
execution. Table 1 shows the algorithmic group based on
the time complexity asymptotically.

The time and space requirements of an algorithm
depend on the size of the input, typically the amount of
data being processed. The size of the input is symbolized
by n. After setting the input size, the next step in
measuring the time complexity is to calculate the number
of operations performed by the algorithm so that the
notation of the time complexity in function n is f{n).

Implementation and Comparison

In order to establish affinity matrix, there are several
steps that must be completed, in the vertical
fragmentation of activities. In the process of vertical
fragmentation, we do a comparison results using 10
tables in the DBD health database (Dummy Data), using
70 queries to fragmentation table wvertically. The
measures that we use in executing the research outline is
as follows: In the method of BEA, the first step is the
formation of affinity matrix by classifying attributes
based on the affinity (AA). The next perform matrix
multiplication using Attributes (AU) with a matrix of
Query Access (QA) thus that the contribution of each
attribute value obtained to get a Split tilapia Quality
(SQ) as a determinant of the result of fragmentation. To
evaluate the value of the access cost, then after the
obtained values of table fragmentation results from both
methods, the next step is to compare the values of these
fragments, by calculating the Partition Evaluator (PE).

From the utilization of the above two algorithms,
generate some fragments of the BEA and GBVP
algorithms. Furthermore, using Partition Evaluator (PE)

results from both fragments the algorithm will compare
and evaluate. The input used in this process is the PE
matrix that can accesses the attributes.

PE Calculation (Using BEA and GBVP)

After using the BEA and GBVP methods, then
calculate the cost to access the data from the calculation
table with the proposed method. The results of
fragmentation of the calculation table using BEA and
GBVP methods in the table below:

The table above shows the result of the
fragmentation of each table that uses GBVP and BEA
algorithms. The results of the two algorithms above
fragmentation display different results due to the
fragmentation of the rules already established on the
algorithm used. Results fragmentation by each of the
methods will be tested by calculating the cost of data
access using Partition Evaluator.

Access Cost

The results of the calculation of the cost of access to
data by using Partition Evaluator (PE) show differences
Partition Evaluator value of both BEA and GBVP
algorithms which are shown in the table.

From the results of the experiments conducted,
indicating that the GBVP algorithm produces a better
fragmentation rather than BEA algorithms that can be
seen from the partition Evaluators (PE) resulted from the
total cost of access for relevant attributes and attribute
minimal access cost is irrelevant. Where the greater
value of Partition Evaluator (PE) produced which
partition or fragmentation is better.

Comparison between BEA and GBVP

The results of the proposed algorithm show the
comparison of query execution time on tables
fragmented by using BE and GBVP algorithms.
Execution time comparison results obtained from the
implementation of the results table fragmentation
generated by both algorithms when design of ProSIARS
Distributed Databases. Comparison of the execution time
is shown in the figure below.

0.1

0.08

2
0.06 \

0i04 \

X X
I\ /\

&

0.02

\/\“7"

Table 1
Table 2
Table 3
Table 4
Table 5

Table 6
Table 7
Table 8
Table 9
Table 10

Fig. 3: Comparison graph algorithm execution time BEA and GBVP

471

Slamet Sudaryanto Nurhendratno ef al. / Journal of Computer Science 2018, 14 (4): 466476

DOL: 10,3844/ jessp.2018.466.476

Figure 3. shows the difference in access time of the
query (execution) of the experiment using the BEA
algorithm and the GBVP algorithm. Figure 3 shows that
6 of the 10 Tables (fragmented using the BEA
algorithm) have a higher execution time than the GBVP
algorithm (Tables 1, 2, 3, 5, 7 and 10). The graph also
shows 3 tables having the same execution time (Tables
6, 8 and 9). While Table 4 is the only one fragmentation
with BEA algorithm which has lower execution time

Table 4: Cluster affinity matrix

A3 Al A5 Ad A2
A3 33 22 11 11 0
Al 22 71 29 20 20
A5 11 29 40 11 0
A4 11 20 11 31 20
A2 0 20 0 20 20

Table 5: Query access matrix BEA

compared to GBVP algorithm. For Table 10 and 11 are Al A3 A4 A5 A2
comparison of the space complexity of BEA and GBVP. 1 1 0 0 0
There are the difference space of complexity are BEA I 0 0 1 0
and GBVP that is in the number of iterations (/) and (') [1] : []] []]
1 Ly T
space of complexcity O(I*k*m*n). —— —
Table 1: The use of any attribute matrix
Al A2 A3 Ad A5 Table 6: Query access matrix GBVP
qé } g (1] 8 [1] Al A3 AS A2 A4
3 1 1 0 | 0 ' 1 0 0 0
g4 0 0 1 | 1 1 0 I 0 0
| 0 0 1 1
Table 2: Matrix of query access on every site 0 1 1 0 1
Sitel Site2 Site3 Amount Fragment | Fragment 2
q1 0 7 5 22
q2 20 9 0 29 Table 7: Algorithmic group
‘li S ;2 g %(I: Algorithm group Name
4 al)y Constant
Table 3: Affinity matrix log n) Logarithmic
Al A2 A3 Al A5 9m Lincar
AT 71 30 73 20 79 Nz nlogn
A2 20 20 0 20 0 O(n;] Quat_:lranc
A3 22 0 33 11 3 An) Cubic
Ad 20 20 11 31 11 2" Exponential
AS 29 0 11 11 40 An') Factorial

Table 8: Result of fragmentation

Fragmentation results table

Tables BEA Method GBVP Method
ms_pasien [A2 A3 Al Ad]| [A5] [Al A2 A3]| [Ad AS]
tb tindakan [A3 Al A5 AT A2 AG] | [Al [Al A2 A5 Ab] | [AT A3 Ad]

tb_rckam_medis
ms_paramedis
ms_wilayah
ms_unit_surveilans
th_resume

[A6 A4 A2 Al A3 AS]|[A7]
[A3 A2 Ad] | [A5 Al]

[A3 A2 Al] | [A4]

[Ad AS] | [Al A2 A3]

th_rujukan [A3 A2 Al] | [Ad]
th_kejadian [A3 A5 Ad A2 A6 A7 Al]| [A8]
th kelas [A4 Al A3 A2] | [AS]

I
[A9 ATO A6 A4 A3 A2 Al A5 AT] | [AB]

[Al A2 A3 Ad] | [A6 AS A8 AT A9] | [A10]
[Al A2 A3] | [A6 AT]| [A4 AS)

[Al A2 AS]|[A3 A4]

[Al A2 A3] | [A4]

[Al A2 A3]| [A4 AS]

[Al A2 A3]| [A4]

[AS A2 A4] | [A6 AT A8] | [A1]][A3]

[Al A2 A3]| [A4 A5]

Table 9: Partition evaluator value

Value partition evaluator

Tables BEA GBVP
ms_pasien 4,75 4,98
th_tindakan 7.41 10.41
tb_rekam_medis 17,85 17.95
ms_paramedis 10,98 8,34
ms_wilayah 3.49 4.64
ms_unit_surveilans 4,34 4,34
tb_resume 5,32 5,32
tb_rujukan 372 3.72
tb_kejadian 15.28 103
tb_kelas 12,5 14.07

472

Slamet Sudaryanto Nurhendratno ef al. / Journal of Computer Science 2018, 14 (4): 466476

DOL: 10,3844/ jessp.2018.466.476

Table 10: Space complexity o BEA

Number of

Number of

Number of Space complexity

Tables name points (m) atiributes (n) iterations (7) O*k*m*n)
ms_pasien 60 5 10 3.000
tb_tindakan 30 7 21 4410
tb_rekam_medis 63 10 44 27.720
ms_paramedis 51 7 21 7497
ms_wilayah 19 5 10 9.500
ms_unit_surveilans 41 4 6 744.000
tb_resume 88 5 10 4.400
tb_rujukan 58 4 6 1.392
tb_kejadian 27 8 28 6.048
tb_kelas 9 5 10 450.000
Average Space Complexity with 10 tables relation 74 queries 5.661

Table 11: Space complexity of GBVP

Number of Number of Number of Space complexity
Tables name points (m) atributes (n) iterations (7) O T*k*m*n)
ms_pasien 60 5 6 1.800
tb_tindakan 30 7 8 1.680
tb_rekam_medis 63 10 11 6.930
ms_paramedis 51 7 8 2.856
ms_wilayah 19 5 10 950.000
ms_unit_surveilans 41 4 5 820.000
tb_resume 88 5 6 2.640
tb_rujukan 58 4 5 1.160
th_kejadian 27 8 9 1.944
Tb_kelas 9 5 6 270.000
Average Space Complexity with 10 tables relation 74 queries 2.105

Time Complexity Reduction

The result of time complexity analysis of BEA and
GBPV algorithm can be proved as follows:

I. Step | (initialization) of the Prim algorithm takes
at most n operations. So the complexity of this
step is O(n)

2. Step 2, is an iteration step, requires at most n-1

testing (since one node is selected in step 2), so the

complexity of this step is O(n)

Step 3 run exactly n times. Each time you perform

step 3, define the edge with the smallest weights of

the unassigned node set (F) to the set of connected

nodes (7), with at most n operations. So this step 3

has a complexity of O(n)

L

After the node in the most recent T set is marked,
it is necessary to update the node list in the set F. For
each node in the set F, there is a comparison of the
weights of the smallest side of the node in the set F to
the node of the set 7, to determine the side with the
smallest weights connected any node in the set F to
any node in the set T. The partition renewal process is
in O(n) operation, none of this part 3 requires more
than O(n) operation, then the complexity of step 3 is
(n), remember that O(n) + O(n) = (n). Since step 3
is implemented n times, then the operations performed
is (mM(O(n)) = ()(nz). So the complexity of all

iteration steps (step 2 and step 3) is O(n) + O(n") =
O(n” + n) = O(n*). From calculating the complexity of
each of the above steps, the complexity of the GBPV
algorithm is the complexity of step 1 + the complexity
of the steps of all iterations (step 2 and step 3). the
time complexity in function n is s:

f(n)=0(n)+ U(nz)
= {)(n" + n]
= U(n!)

So it can be concluded that GBVP time complexity
is quadratic.
Then the time required is nothing more than

s c+b+a(n+1)], which can be simplified into

1=l
(a2 +(b+c-al2)*n+(d-b)). The function is
dominated by (a/2)*r. Then according to the definition
of big-O can be written f{(n) = n.c=a2andn’=0. It
can be said that the algorithm has the time complexity
in quadratic, O(n?).

The exponential function 7(n) = 2"*, where k is a
constant, is O(2") because 2" is 2% for all n.
Generally, T(n) = m"* is O(I"); 1 = m>1. because m"™* <
1" = 1" for any constant k.

Below is a split bond energy algorithm that can be
seen in Fig. 4 where the input is an Cluster Affinity
Matrix (CAM) and the output is F Set of two Fragments.

Slamet Sudaryanto Nurhendratno ef al. / Journal of Computer Science 2018, 14 (4): 466476

DOL: 10.3844/jessp.2018.466.476

Split of Bond Energy Algorithm

Input : Cluster Affinity Matrix (CAM)
Output: " Set of two Fragments

Begin
{ Initialization of variables}
NN
MLL.Y):
1. {Ditermine Split Point}
For/=1 to n do
2. If (i == 1) then
3. Y[1,i] = CAM(L);
4. Else
5. M 1.i] = CAM(1.))-CAM(1.i-1):
6. End-If
7. X Li] =i
8. End-For
9, Plot(X.1);
10. Smallest = }T1.1]:
11. Split-Point = 1;
12, Fori=2ton
13. If (Smallest< ¥[1,] then
14. Split-point is recorded as A1, /]
15. Smallest = M1, 1]
16. End-If
17. End-For
18. End-Begin

T(n)=d+ Zj, Il[c+b+ a(n—l)]

Fig. 4: Split of Bond Energy Algorithm (BEA).

Space Complexity Reduction

The space requirements for BEA are modest because
only the data points and centroids are stored.
Specifically, the storage required is:

O([m+k)n)

where, m is the number of points and n is the number
of attributes. The time equirements for BEA are also
modest-basically linear in the number of data points.
In particular, the time required is:

O(f =k*m=*n)

where, [/ is the number of iterations required for
convergence, as mentioned / is often small and can
usually be safely bound as most changes typically occur
in the first few iterations which can be seen in Fig. 5
split of GBVP algorithm. Therefore BEA 1s linear in m,
the number of points and is efficient as well as simple
provided that K, the number of cluster is significantly
less than m (Rahimi and Riahi, 2015).

Slamet Sudaryanto Nurhendratno ef al. / Journal of Computer Science 2018, 14 (4): 466476

DOL: 10,3844/ jessp.2018.466.476

Split af GBVP
Input : F-Q1.Q2...Qu
Output : Ree-1D/
Cluster-NO' [1:N/K]
Begin

{Initialzation steps}
k. For each ' do in parallel
2. Forp=1to N/K do
3. Read P (p);
4. Cluster -NC [p] = 0;
5. REC-ID' [p] = (j-i) * N/K + p;
6. Fori=1twoM do
7. If FI [p] satisfies Q; then
8. Cluster — NO' [p] = Cluster — NO/ [p] +2 ™
9. End-If
10. End-For
I End-For

T(n) = 2"

Fig. 5: Split of GBVP algorithm

Conclusion

The purpose of conducting this study is to know
the impact on the response time while moving from
centralized to distributed databases with BEA and
GBVP Algorithms.

Experiments fragmentation vertically done using
BEA and GBVP algorithms at 10 tables by using a total
of 74 queries and input an affinity matrix resulted in the
fragmentation of the different tables. Based on the results
of trials that have been done show that GBVP algorithm
is an algorithm that is more optimal for use in the
process of fragmentation of the table vertically. The
statement was supported by the results of the analysis of
algorithms GBVP who have less computational
complexity and generate value Partition Evaluator higher
and has a query execution time is lower compared with
the results of fragmentation using BEA algorithm.
Distributed databases have many aspects and every
organization has certain preferences. For the public
health DBD (Dummy Data), the response time is
prioritized. Our experiment showed that the average
response time is decreased if we switch from centralized
database to distributed database. In distribution, we put
the data to the site where it is used most frequently. This
locality of data reduces the response time. In the
distributed database, data is fragmented. These

fragments are short compared to the full database
(centralized database contains maximum columns).
However, when we need data from multiple sites for a
query (report queries), the response time is increased.
Accessing data from multiple remote sites and then
joining those takes a long time. But in the centralized
database, since data is at one place so, it is easy and fast
to search it. The purpose of conducting this study is to
know the impact on the response time while moving
from centralized to distributed databases using vertical
fragmentation. Experiment results showed that the
response time is decreased in distributed databases. Due
to fragmentation dataset for the single site contains fewer
records than the centralized database, therefore the
response time is less. In algorithm performance (time
and space complexity) GBVP algorithm has better space
complexity than BEA (50% better). For Time
complexity the BEA algorithm has a group of quadratic
functions of O(n"). The GBVP algorithm has an
exponential algorithm group O(°).

Acknowledgement

This research was provided by the Research and
Technology Ministry of Higher Education, sponsored
under a grant budget of private colleges compete
coordinator V1 Central Java, Indonesia.

475

Slamet Sudaryanto Nurhendratno ef al. / Journal of Computer Science 2018, 14 (4): 466476

DOL: 10,3844/ jessp.2018.466.476

Funding Information

All funding for conducting this research comes from
the research grant scheme of the ministry of research and
higher education of the Republic of Indonesia.

Author’s Contributions

Slamet Sudaryanto Nurhendratno: Designed and
analysed data, performed experiments and co-wrote
the paper.

Sudaryanto: Performed experiments
GBVP, simulation and evaluation.

Maryani Setyowati: Designed experiments and
work supervision.

BEA and

Ethics

This article is the original contribution of the authors
and is not published elsewhere. There is no ethical issue
involved in this article.

References

Abdalla, H. and A. Amer, 2012. Dynamic horizontal
fragmentation, replication and allocation model in
DDBSs. Proceedings of the International Conference
on Information Technology and e-Services, Mar. 24-26,
IEEE Xplore Press, Sousse, Tunisia, pp: 1-7.

DOI: 10.1109/ICITeS.2012.6216603

Al-Sayyed, R., F. Al Zaghoul, D. Suleiman, M. Itrig and
I. Hababeh, 2014. A new approach for database
fragmentation and allocation to improve the distributed
database management system performance. J. Softw.
Eng. Applic., 7: 891-905.

DOI: 10.4236 / jsea.2014.711080

Bhaskar, R. and R. Sharma, 2012. An analysis of
vertical splitting algorithm. Int. J. Comput. Applic.,
52: 30-36. DOL: 10.5120/8304-1767

Cornell, D.W. and P.S. Yu, 1990. A vertical partitioning
algorithm for relational database. Proceedings of the
International Conference on Data Engineering,
(CDE’ 90), Los Angeles, California, pp: 30-35.

Fung, C., K., Karlapalem and Q. Li, 2002. An evaluation
of vertical class partitioning for query processing in
object-oriented databases. IEEE Trans. Knowl.
Data Eng., 14: 1095-1118.

DOI: 10.1109/TKDE.2002.1033777

476

Hoffer, J.A and D.G. Severance, 1975. The use of cluster
analysis in physical database design. Proceedings of
the Ist International Conference on Very Large
Database, (VLD’ 75), pp: 69-86.

Lisbeth, R. and X. Li, 2011. A vertical partitioning
algorithm for distributed multimedia databases.
Proceedings of the International Conference on
Database and Expert Systems Applications, (ESA” 11),
Springer, Berlin, Heidelberg, pp: 544-558.

DOI: 10.1007 / 978364223 091248

Navate, S.B., S. Ceri, G. Wiederhold and J. Dour, 1984.
Vertical partitioning algorithms for database design.
ACM Trans. Database Syst., 9: 680-710.

DOI: 10.1145/1994.2209

Nurhendratno, S.S. and F. Budiman, 2017. Design model
integration and syncronization between surveillance
units to support data warehouse epidemiology. J.
Theoretical Applied Informa. Technol., 95: 498-505.

Rahimi, H. and D. Riahi, 2015. Hierarchical
simultaneous vertical fragmentation and allocation
using modified Bond Energy Algorithm in
distributed databases. Applied Comput. Informat.
Saudi Comput. Society, King Saud Uni.

DOI: 10.1016/j.aci.2015.03.001

Rahimi, S.K. and F.S. Haug, 2010. Query Optimization.
In: Distributed Database Management Systems: A
Practical Approach, Rahimi, S.K. and F.S. Haug
(Eds.), John Wiley and Sons, Inc., NJ. Hoboken,
USA., ISBN-10: 0470602368.

Rodriguez, L. and X. Li, 2011. A support-based vertical
partitioning method for database design.
Proceedigns of the 8th International Conference on
Electrical Engineering Computing Science and
Automatic Control, Oct. 26-28, IEEE Xplore Press,
Mexico, pp: 1-6. DOL 10.1 109/ICEEE.2011.6106682

Runeeanu, R., 2008. Fragmentation in Distributed
Databases. In: Innovations and Advanced
Techniques in System, Computing Science and
Software Engineering, Elleithy, K. (Ed.). Springer
Science, Business Media B.V,

ISBN-10: 9781402052620, pp: 57-62.

Jurnal-internasional-2018

ORIGINALITY REPORT

17. 12. 11« 3.

SIMILARITY INDEX INTERNET SOURCES PUBLICATIONS STUDENT PAPERS

PRIMARY SOURCES

Shamkant B. Navathe, Mingyoung Ra. "Vertical
partitioning for database design: a graphical
algorithm", ACM SIGMOD Record, 1989

Publication

2

jjcsit.com

Internet Source

1o

WWW.ijcsi.org

Internet Source

1o

Sharma Chakravarthy. "An objective function
for vertically partitioning relations in distributed
databases and its analysis", Distributed and
Parallel Databases, 04/1994

Publication

1o

Zhikun Chen, Shugiang Yang, Hui Zhao, Hong
Yin. "An Objective Function for Dividing Class
Family in NoSQL Database", 2012 International
Conference on Computer Science and Service
System, 2012

Publication

1o

www.kar.nic.in

Internet Source

1o

www.ijtrd.com

Internet Source

1o

Hossein Rahimi, Fereshteh-Azadi Parand,
Davoud Riahi. "Hierarchical simultaneous
vertical fragmentation and allocation using
modified Bond Energy Algorithm in distributed
databases", Applied Computing and
Informatics, 2015

Publication

1o

WWW.Cs.mun.Ca

Internet Source

1o

RN
(@)

www-users.cs.umn.edu

Internet Source

1o

—_—
—

tutorial-computer.com

Internet Source

1o

Isirwww.epfl.ch
Internet Sourcep < 1 %
Ali A. Amer, Adel A. Sewisy, Taha M.A. <1 o

Elgendy. "An optimized approach for
simultaneous horizontal data fragmentation
and allocation in Distributed Database Systems
(DDBSs)", Heliyon, 2017

Publication

14 Jun Du. "Genetic algorithms based approach to <1 o
database vertical partition", Journal of °
Intelligent Information Systems, 03/2006
Publication

Zhang, Peng, Yanbo Han, and Muhammad Ali <1 y
Babar. "A dataflow optimisation mechanism for °
service-oriented cloud workflow", International
Journal of Computational Science and
Engineering, 2015.

Publication
archive.or
Internet Source g < 1 %
Dalia Nashat, Ali A. Amer. "A Comprehensive <1 o
Taxonomy of Fragmentation and Allocation °
Techniques in Distributed Database Design”,
ACM Computing Surveys, 2018
Publication
M.T. Faheem, A. Sarhan, R.L. Ibrahem. <1 o
"Fragmentation and Allocation of Object- °
Oriented Databases for Simple Attributes and
Complex Methods: A Cost-Based Technique”,
2005 International Conference on Information
and Communication Technology, 2005
Publication
eoscienceworld.or
gternet Source g < 1 %

Submitted to RDI Distance Learnin
Student Paper g <1 %
Son, J.H.. "An adaptable vertical partitioning <1 o
method in distributed systems", The Journal of °
Systems & Software, 200411/12
Publication
dfs.semanticscholar.or
IFr?ternet Source g < 1 %
Rodriguez-Mazahua, Lisbeth, Giner Alor- <1 o
Hernandez, Xiaoou Li, Jair Cervantes, and °
Asdrubal Lépez-Chau. "Active rule base
development for dynamic vertical partitioning
of multimedia databases", Journal of Intelligent
Information Systems, 2016.
Publication
Hyojin Choi, Wonchul Lee, Wonyong Sung. <1 o
"Memory Access Reduced Software °
Implementation of H.264/AVC Sub-pixel Motion
Estimation Using Differential Data Encoding”,
2007 IEEE International Symposium on Circuits
and Systems, 2007
Publication
www.cin.ufpe.br <1 .
Internet Source /0
docslide.us
Internet Source < 1 %

www.at-vintage.com.ua
Internet Source g < 1 %
Innovations and Advanced Techniques in <1 o
Systems Computing Sciences and Software °
Engineering, 2008.
Publication
Kang Zhang. "Deriving program physical <1
: : " %
structures using bond energy algorithm”",
Proceedings Sixth Asia Pacific Software
Engineering Conference (ASPEC 99) (Cat No
PR00509) APSEC-99, 1999
Publication
www.thescipub.com
Internet Source p <1 %
algorithm.cs.nthu.edu.tw
Integnet Source < 1 %
Yaashuwanth, . "Web-Enabled Framework for <1 o
Real-Time Scheduler Simulator: A Teaching °
Too", Journal of Computer Science, 2010.
Publication
Adriano Cesar Ribeiro, Alex Roschildt Pinto, <1 o

Geraldo Francisco Donega Zafalon, Daniel
Fernando Pigatto, Kalinka Castelo Branco,
Adriano Mauro Cansian. "AN APPROACH TO
MITIGATE DENIAL OF SERVICE ATTACKS IN
IEEE 802.11 NETWORKS", Journal of

Computer Science, 2014

Publication

es.scribd.com

Internet Source < 1 %
fac.ksu.edu.sa

Internet Source < 1 %
fpga.parallel.ru

InItDe%et gource < 1 %

. Aikawa, Takuya, Natsumi Kanzaki, and <1 o
Noritoshi Maehara. "ITS-RFLP pattern of °
Bursaphelenchus xylophilus (Nematoda:
Aphelenchoididae) does not reflect nematode
virulence", Journal of Forest Research, 2013.
Publication
www.ncbi.nlm.nih.gov

Internet Source g < 1 %
WWW.NEersc.gov

Internet Source g <1 %
dblp.I3s.uni-hannover.de

Interngt Source < 1 %
comnet.kmu.ac.kr

Internet Source < 1 %
www.dd.iij4u.or.j

Internet Source.I Jp < 1 %

Mohamed A. Soliman, lhab F. llyas. "Ranking <1 .
with Uncertain Scores”, 2009 IEEE 25th /o

International Conference on Data Engineering,

2009
Publication
www.ilk-end.com
Internet Source < 1 %

Farah Zakiyah Rahmanti, Novita Kurnia
Ningrum, Prajanto Wahyu Adi, Mauridhi Hery
Purnomo. "A comparison of plasmodium
falciparum identification from digitalization
microscopic thick blood film", 2016 1st
International Conference on Biomedical
Engineering (IBIOMED), 2016

Publication

<1%

Exclude quotes Off Exclude matches < 8 words

Exclude bibliography Off

Jurnal-internasional-2018

GRADEMARK REPORT

FINAL GRADE GENERAL COMMENTS

/O Instructor

PAGE 1

PAGE 2

PAGE 3

PAGE 4

PAGE 5

PAGE 6

PAGE 7

PAGE 8

PAGE 9

PAGE 10

PAGE 11

	Jurnal-internasional-2018
	by Maryani Setyowati

	Jurnal-internasional-2018
	ORIGINALITY REPORT
	PRIMARY SOURCES

	Jurnal-internasional-2018
	GRADEMARK REPORT
	FINAL GRADE
	GENERAL COMMENTS
	Instructor

